Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

THE

E L E M E N T S

 0 F
EUCLID;

VIZ.
THE FIRST SIX BOOKS,

together with the

ELEVENTH AND TWELFTH.

The ERRORS by which Theon, or others, have long ago vitiated these Books, are Corrected,
And some of EUCLID'S Demonstrations are Restored.
$\frac{\text { THE BOOK OF }}{}$
E U CLID'S D ATA. In like Manner Corrected.

By ROBERT SIMSON, M. D.

Emeritus Professor of Mathematics in the University of Glasgow.

The Thirternth Edition, carefully revised and improved,
To which is added,

A TREATISE on the CONSTRUCTION of the TRIGONOMETRICAL CANON ; AND A CONCISE ACCOUNT OF LOGARITHMS.

> LONDON:

FRINTED FOR F. WINGRAVE; J. JOHNSON; W. J. AND J. RICEARDSON; F. C. AND J. RIVIXGFON ; J. WALEER; J. SCATCEERD ATD C. J. IETTERMAN ; G. WILEIE ANVD J. ROBINSON; VERNOR, HOOD, $A N D$ SHARPE; LONGMAN, HURST, REES, AR゚D ORME; T. CADELL $\angle X D ~ F . ~$ DATIES; R, PEILLIPS; AND J. MAWMAN.

QA
31
$E 866$
1806

THEKING,

THIS EDITION

QFTEI

PRINCIPAL BOOES

OE THE

ELEMENTS OF EUCLID,

```
AND OF TME
```

BOOK OF HIS DATA,

15 MOST HUMBLY DEDICATED,

Br

HIS MAJESTY'S

MOST DUTIFUL,
AND MOST DEVOTED
SUBJECT AND SERVANT,
ROBERT SIMSON,

CONTENTS.

PREFACE,

The ELEMENTS, Page I to 28
NOTES, Critical and Geometrical, -. - . .-. . 287
The DATA, -......................... 355
Plane TRIGONOMETRY, 473
CONSTRUCTIONS of the TRIGONOMETRICAL CANON,-................... 485

Of LOGARITHMS, -. - 492
Spherical TRIGONOMETRY, -. 504

PREFACE.

THE opinions of the moderns concerning the author of the Elements of Geometry, which go under Euclid's name, are very different and contrary to one another. Peter Ramus ascribes the Propositions, as well as their Demonstrations, to Theon; others think the Propositions to be Euclid's, but that the Demonstrations are Theon's'; and others maintain, that all the Propositions and their Demonstrations are Euclid's own. John Buteo and Sir Henry Savile are the authors of greatest note who assert this last; and the greater part of geometers have ever since been of this opinion, as they thought it the most probable. Sir Henry Savile, after the several arguments he brings to prove it, makes this conclusion (Page 13. Prælect.) "That, excepting a very few interpolations, expli"cations, and additions, Theon altered nothing in Euclid." But, by often considering and comparing together the Definitions and Demonstrations as they are in the Greek editions we now have, I found that Theon, or whoever was the editor of the present Greek text, by adding some things, suppressing others, and mixing his own with Euclid's Demonstrations, had changed more things to the worse than is commonly supposed, and those not of small moment, especially in the fifth and eleventh Books of the Elements, which this editor has greatly vitiated; for instance, by substituting a shorter, but insufficient Demonstration of the 18th Prop. of the 5 th Book, in place of the legitimate one which Euclid had given; and by taking out of this Book, besides other things, the good definition which Eudoxus or Euclid had given of compound ratio, and giving an absurd one in place of it in the sth Definition of the 6th Book, which neither Euclid, Archimedes, Apollonius, nor any geometer before Theon's time, ever made use of, and of which there is not to be found the least appearance in any of their writings; and, as this Definition did much embarrass beginners, and is quite useless, it is now thrown out of the Elements, and another, which, without doubt, Euclid had given, is put in its proper place among the Definitions

Definitions of the 5 th Book, by which the doctrine of compound ratios is rendered plain and easy. Besides among the Definitions of the IIth Book, there is this, which is the tenth, viz: "Equal and similar solid figures are those which are "contained by similar planes of the same number and mag" nitude." Now this Proposition is a Theorem, not a Definition ; because the equality of figures of any kind must be demonstrated, and not assumed ; and therefore, though this were a true Proposition, it ought to have been demonstrated. But, indeed, this Proposition, which makes the roth Definition of the 1Ith Book, is not true universally, except in the case in which each of the solid angles of the figures is contained by no more than three plane angles ; for in other cases, two solid figures may be contained by similar planes of the same number and magnitude, and yet be unequal to one another, as shall be made evident in the Notes subjoined to these Elements. In like manner, in the Demonstration of the 26th Prop. of the IIth Book, it is taken for granted, that those solid angles are equal to one another which are contained by plain angles of the same number and magnitude, placed in the same order; but neither is this universally true, except in the case in which the solid angles are contained by no more than three plane angles; nor of this case is there any Demonstration in the Elements we now have, though it be quite necessary there ṣhould be one. Now, upon the ioth Definition of this Book depend the 25th and 28th Propositions of it; and, upon the 25 th and 26 th depend other eight, viz。 the 27 th, 31 ist, $32 \mathrm{~d}, 33^{\mathrm{d}}, 34^{\text {th }}, 36$ th, 37 th, and 40 th of the same Book; and the 12 th of the 12 th Book depends upon the eighth of the same; and this eighth, and the Corollary of Proposition 17 th and Proposition 18th of the 12th Book, depend upon the gth Difinition of the IIth Book, which is not a right definition; because there may be solids contained by the same number of similar plane figures, which are not similar to one another, in the true sense of similarity received by geometers; and all these Propositions have, for these reasons, been insufficiently demonstrated since Theon's time hitherto. Besides, there are several other things; which have nothing of Euclid's accuracy, and which plainly shew, that his Elements have been much corrupted by unskilful geometers; and though these are not so gross as the others now mentioned, they ought by no means to remain uncorrected.

Upon these accounts it appeared necessary, and I hope will prove acceptable, to all lovers of accurate reasoning, and of
mathematical learning, to remove such blemishes, and restore the principal Books of the Elements to their original accuracy, as far as I was able; especially since these Elements are the foundation of a science by which the investigation and discovery of useful truths, at least in mathematical learning, is promoted as far as the limited powers of the mind allow; and which likewise is of the greatest use in the arts both of peace and war, to many of which geometry is absolutely necessary. This I have endeavoured to do, by taking away the inaccurate and false reasonings which unskilful editors have put into the place of some of the genuine Demonstrations of Euclid. who has ever been justly celebrated as the most accurate of geometers, and by restoring to him those things which Theon or others have suppressed, and which have these many ages been buried in oblivion.

In this edition, Ptolemy's Proposition concerning a property of quadrilateral figures in a circle, is added at the end of the sixth Book. A iso the Note on the 2gth Proposition, Book 1st, is altered, and made more explicit, and a more general Demonstration is given, instead of that which was in the Note on the roth Definition of Book IIth; besides, the Translation is much amended by the friendly assistance of a learned gentleman.

To which are also added, the Elements of Plane and Sphesical Trigonometry, which are commonly taught after the Elements of Euclid.

ADVERTISEMENT.

THE favourable reception which former editions of Professor Simson's Elements of Euclid have met with from the public, induced the proprietors of the work to carry into execution every measure most likely to secure and continue general approbation. With this view, the preseint edition has been carefully revised throughout, by a very eminent mathematician; for the convenience of tutors, as zuell as students, a short treatisc on the Construction of the Trigonometrical Canon has now been inserted, from a late celebrated author; and to this has been added, a concise Account of Logarithms, and improved methods of calculating them, by the present Savilian Professor of Geometry in the University of Oxford.

THE

E L E M E'N TS
 or
 E U C L I D.

BOOK I.

DEFINITIONS.

I.

A POINT is that which hath no parts, or which hath no magnitude.
II.

A line is length without breadth.
III.

The extremities of a line are points.
IV.

A straight line is that which lies evenly between its extreme points.
V.

A superficies is that which hath only length and breadth. VI.

The extremities of a superficies are lines.
VII.

A plane superficies is that in which any two points being taken, See N. the straight line between them lies wholly in that superficies.
VIII.
"A plane angle is the inclination of two lines to one another see N. "in a plane, which meet together, but are not in the same "direction."
IX.

A plane rectilineal angle is the inclination of two straight lines to one another 2_{2}, which meet together, but are not in the same straight line.

BookI.

N. B. 'When several angles are at one point B, any one ' of them is expressed by three letters, of which the letter that
' is at the vertex of the angle, that is, at the point in which
' the straight lines that contain the angle meet one another,
' is put between the other two letters, and one of these two is
'somewhere upon one of those straight lines, and the other
' upon the other line: Thus the angle which is contained by
6 the straight lines AB, CB, is named the angle ABC , or CBA ;
' that which is contained by AB, BD is named the angle
' ABD , or DBA ; and that which is contained by BD, CB
' is called the angle DBC, or CBD; but, if there be only
' one angle at a point, it may be expressed by a letter placed
' at that point; as the angle at E.'
X.

When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a right angle; and the straight line which stands on the other is called a perpendicular to
 it.
XI.

An obtuse angle is that which is greater than a right angle.

XII.

An acute angle is that which is less than a right angle.
XIII.
" A term or boundary is the extremity of any thing."
XIV.

A figure is that which is inclosed by one or more boundaries.

A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference, are equal to one another.

XVI.

And this point is called the centre of the circle.
XVII.

A diameter of a circle is a straight line drawn through the See N. centre, and terminated both ways by the circumference. XVIII.

A semicircle is the figure contained by a diameter and the part of the circumference cut off by the diameter. XIX.
"A segment of a circle is the figure contained by a straight " line, and the circumference it cuts off."
XX.

Rectilineal figures are those which are contained by straight lines.
XXI.

Trilateral figures, or triangles, by three straight lines. XXII.

Quadrilateral, by four straight lines.
XXIII.

Mutilateral figures, or polygons, by more than four straight lines.
XXIV.

Of three-sided figures, an equilateral triangle is that which has three equal sides.
XXV.

An isosceles triangle is that which has only two sides equal. B 2

4

THEELEMENTS

XXVI.

A scalene triangle, is that which has three unequal sides. XXVII.

A right angled triangle, is that which has a right angle. XXVIII.

An obtuse angled triangle, is that which has an obtuse angle.

An acute angled triangle, is that which has three acute angles.
XXX.

Of four-fided figures, a square is that which has all its sides equal, and all its angles right angles.

XXXI.

An oblong, is that which has all its angles right angles, but has not all irs sides equal.
XXXII.

A rhombus, is that which has its sides equal, but its angles are not right angles.

XXXIII.

See N. A rhomboid, is that which has its opposite sides equal to one another, but all its sides are not equal, nor its angles right angles.

All other four-sided figures besides these, are called Trapeziums.

$$
x \times x v^{\prime} .
$$

Parallel straight lines, are such as are in the same plane, and which, being produced ever so far both ways, do not meet.

POSTULATES.

L1.

LET it be granted that a straight line may be drawn from any one point to any other point.
II.

That a terminated straight line may be produced to any length in a straight line.

> III.

And that a circle may be described from any centre, at any distance from that centre.

A X I OMS.

THINGS which are equal to the same are equal to one another.

> II.

If equals be added to equals, the wholes are equal. III.

If equals be taken from equals, the remainders are equal. IV.

If equals be added to unequals, the wholes are unequal. V.

If equals be taken from unequals, the remainders are unequal. VI.

Things which are double of the same, are equal to one another. VII.

Things which are halves of the same, are equal to one another. VIII.

Magnitudes which coincide with one another, that is, which exactly fill the same space, are equal to one another.

$$
B_{3}
$$

THE ELEMENTS

Book 1 .
IX.

The whole is greater than its part. X.

Two straight lines cannot inclose a space.
XI.

All right angles are equal to one another. XII.
"If a straight line meets two straight lines, so as to make " the two interior angles on the same side of it taken toge" ther less than two right angles, these straight lines being " continually produced, shall at length meet upon that side " on which are the angles which are less than two right " angles. See the notes on Prop. 29. of Book I."

PROPOSITION I. PROBLEM.

$\xrightarrow{\sim}$

TO describe an equilateral triangle upon a given finite straight line.
Let $A B$ be the given straight line; it is required to describe an equilateral triangle upon it.
From the centre A, at the distance $A B$, describe ${ }^{4}$ the circle $B C D$, and from the centre B, at the distance BA, describe the circle ACE; and from the point i) C, in which the circles cut one another, draw the straight lines ${ }^{b}$ CA, CB to the points $\mathrm{A}, \mathrm{B} ; \mathrm{ABC}$ shall be an equilateral triangle.

Because the point A is the centre of the circle BCD, AC is equal cto $A B$; and because the point B is the centre of the ${ }^{c} 15$ Dufingcircle $A C E, B C$ is equal to $B A$: But it has been proved that lion. $C A$ is equal to $A B$; therefore $C A, C B$ are each of them equal to $A B$; but things which are equal to the same are equal to one another ${ }^{d}$; therefore CA is equal to CB ; wherefore CA , $A B, B C$ are equal to one another; and the triangle $A B C$ is therefore equilateral, and it is described upon the given straight line $A B$. Which was required to be done.

PROP. II. PROB.

FROM a given point to draw a straight line equal to a given straight line.

Let A be the given point, and BC the given straight line; it is required to draw from the point A a straight line equal to $B C$.

From the point A to $B d r a w^{2}$ the straight line $A B$; and upon it describe ${ }^{b}$ the equilateral triangle D.IB, and produce the straight lines DA, DB, to E and F ; from the centre B , at the distance BC , describe ${ }^{d}$ the circle CGH, and from the centre D , at the distance DG, describe the circle GKL. AL shall be equal to $B C$.

Because

Bgox I.
e 15 Def.
${ }^{f} 3$ Ax.

Because the point B is the centre of the circle $\mathrm{CGH}, \mathrm{BC}$ is equal ${ }^{\text {c }}$ to BG ; and because D is the centre of the circle GKL, DL is equal to DG, and DA, DB, parts of them, are equal; therefore the remainder AL is equal to the remainder BG : But it has been shown, that $B C$ is equal to BG ; wherefore AL and BC are each of them equal to BG ; and things that are equal to the same are equal to one another ; therefore the straight line AL is equal to BC. Wherefore from the given point A a straight line AL, has been drawn equal to the given straight line BC. Which was to be done.

PROP. III. PROB.

Frow the greater of two given straight lines to cut off a part equal to the less.

Let AB and C be the two given straight lines, whereof $A B$ is the greater. It is required to cut off from $A B$, the greater, a part equal to C , the less.

From the point $A \mathrm{draw}^{2}$ the straight line $A D$ equal to C; and from the centre A, and at the distance AD , describe ${ }^{\text {b }}$ the circle
 DEF ; and because A is the centre of the circle DEF; AE shall be equal to $A D$; but the straight line C is likewise equal to $A D$; whence $A E$ and C are each of them equal to AD ; wherefore the straight line AE is equal to ${ }^{\circ} \mathrm{C}$, and from AB , the greater of two straight lines, a part AE has been cut off equal to C the less. Which was to be done.

PROP. IV. THEOREM.

IF two triangles have two sides of the one equal to two sides of the other, each to each ; and have likewise the angles contained by those sides equal to one another; they shall likewise have their bases, or thired sides, equal ; and the two triangles shall be equal; and their other angles shall be equal, each to each, viz. those to which the equal sides are opposite.

Let ABC, DEF be two triangles, which have the two sides AB, AC equal to the two sides DE, DF, each to each, viz.

$A B$ to $D E$, and $A C$ to $D F$;

 and the angle $B A C$ equal to the angle EDF, the base BC shall be equal to the base EF ; and the triangle ABC to the triangle DEF ; and the other angles to which the equal sides are opposite, shall be equal each to each, viz. the angle ABC to the angle DEF, and the angle $A C B$ to DFE.

For, if the triangle $A B C$ be applied to $D E F$, so that the point A may be on D, and the straight line $A B$ upon $D E$; the point B shall coincide with the point E, because $A B$ is equal to DE ; and AB coinciding with DE, AC shall coincide with DF , because the angle BAC is equal to the angle EDF; wherefore also the point C shall coincide with the point F, because the straight line $A C$ is equal to $D F$: But the point B coincides with the point E; wherefore the base $B C$ shall coincide with the base EF, because the point B coinciding with E , and C with F , if the base BC does not coincide with the base EF, two straight lines would inclose a space, which is impossible 2. Therefore the base BC shall coincide with the base EF. ${ }^{2}: 0 \mathrm{Ax}$. and be equal to it. Wherefore the whole triangle $A B C$ shall coincide with the whole triangle DEF, and be equal to it; and the other angles of the one shall coinc:ide with the remaining angles of the orher, and be equal to them, viz. the angle $A B C$ to the angle DEF, and the angle ACB to DFE. Theretore, if two triangles have two sides of the one equal to two sides of the other, each to each, and have likewise the angles contained by those sides equal to one another, their bases shall likewise be equal, and the triangles be equal, and their other angles to which the equal sides are opposite shall be equal, each to each. Which was to be demonstrated.

PROP. V. THEOR.

' HE angles at the base of an Isosceles triangle are equal to one another; and if the equal sides be produced, the angles upon the other side of the base shall be equal.
Let $A B C$ be an Isosceles triangle, of which the side $A B$ is

Boox I. equal to $A C$, and let the straight lines $A B, A C$ be produced to D and E, the angle $A B C$ shall be equal to the angle $A C B$, and the angle CBD to the angle BCE .

In BD take any point F, and from AE the greater, cut off
23. 1. AG equal to $A F$, the less, and join $F C, G B$.

Because $A F$ is equal to $A G$, and $A B$ to $A C$, the two sides $F A, A C$ are equal to the two $G A, A B$, each to each ; and they contain the angle FAG common to the two triangles $\mathrm{AFC}, \mathrm{AGB}$; therefore the base FC is equal ${ }^{\mathrm{b}}$ to the base GB, and the triangle AFC to the triangle AGB ; and the remaining angles of the one are equal ${ }^{\text {b }}$ to the remaining angles of the other, each to each, to which the equal sides are opposite; viz. the angle ACF to the angle $A B G$, and the angle AFC to the angle $A G B$: And because the whole A.F, is equal to the whole, AG of which the parts $A B, A C$, are D
 equal; the remainder BF shall be equalc to the remainder CG ; and FC was proved to be equal to GB ; therefore the two sides BF, FC are equal to the two CG, GB, each to each; and the angle BFC is equal to the arogle CGB, and the base BC is common to the two triangles $\mathrm{BFC}, \mathrm{CGB}$; wherefore the triangles are equal ${ }^{\text {b }}$, and their remaining angles, each to each, to which the equal sides are opposite; therefore the angle FBC is equal to the angle GCB, and the angle BCF to the angle CBG: And, since it has been demonstrated, that the whole angle ABG is equal to the whole ACF , the parts of which, the angles $\mathrm{CBG}, \mathrm{BCF}$ are also equal ; the remaining angle ABC is therefore equal to the remaining angle ACB , which are the angles at the base of the triangle ABC: And it has also been proved that the angle FBC is equal to the angle CCB , which are the angles upon the other side of the base. Therefore the angles at the base, \&ic. Q. E.D.

Corollary. Hence every equilateral triangle is also equiangular.

PROP. VI. THEOR.

IF two angles of a thougle be cqual to one another, the sides also which subtend, or are opposite to, the equal angles, shall be equal to one another.

Let $A B C$ be a triangle having the angle $A B C$ equal to the Boor 1 . angle $A C B$; the side $\AA B$ is also equal to the side $A C$.

For, if $A B$ be not equal to $A C$, one of them is greater than the other : Let AB be the greater; and from it cut ${ }^{2}$ off $\mathrm{DB}=3.1$. equal to AC , the less, and join DC ; therefore, because in the triangles $\mathrm{DBC}, \mathrm{ACB}$, $D B$ is equal to $A C$, and $B C$ common to both the two sides, DB, BC are equal to the two AC, CB each to each; and the angle $D B C$ is equal to the angle $A C B$; therefore the base DC is equal to the base $A B$, and the triangle $D B C$ is equal to the triangle ACB , the less to the greater ; which is absurd. Therefore $A B$ is not
 unequal to AC , that is, it is equal to it. Wherefore, if two angles, \&ic. Q. E. D.

Cor. Hence every equiangular triangle is also equilateral.

PROP. VII. THEOR.

UPON the same base, and on the same side of it, see N. there cannot be two triangles that have their sides which are terminated in one extremity of the base equal to one another, and likewise those which are terminated in the other extremity.
If it be possible, let there be two triangles $A C B, A D B$, upon the same base $A B$, and upon the same side of it, which have their sides CA, DA, terminated in the extremity A of the base equal to one another, and likewise their sides CB, DB, that are terminated in B .
Join CD; then, in the case in which the vertex of each of the triangles is without the other triangle, because $A C$ is equal to $A D$, the angle $A C D$ is equal to the angle $A D C$: But the angle $A C D$ is greater than the angle $B C D$; therefore the angle $A D C$ is greater also than $B C D$;
 much more then is the angle BDC greater than the angle $B C D$. Again, because $C B$ is equal to $D B$, the angle $B \bar{D} C$ is equals to the angle $B C D$; but it has been demonstrated to be greater than it; which is impossible.

But if one of the vertices, as D, be within the other triangle ACB ; produce AC, AD to E, F; therefore, because $A C$ is equal to $A D$ in the triangle ACD , the angles ECD , FDC upon the other side of the base $C D$ are equal ${ }^{2}$ to one another, but the angle ECD is greater than the angle $B C D$; wherefore the angle FDC is likewise greater than BCD ; much more then is the angle BDC greater than the angle BCD. Again,
 because $C B$ is equal to $D B$, the angle BDC is equal ${ }^{2}$ to the angle BCD ; but BDC has been proved to be greater than the same BCD ; which is unpossible. The case in which the vertex of one triangle is upon a side of theother, needs no demonstration.

Therefore, upon the same base, and on the same side of it, there cannot be two triangles that have their sides which are terminated in one extremity of the base equal to one another, and likewise those which are terminated in the other extremity. Q.E.D.

PROP. VIII. THEOR.

IfF two triangles have two sides of the one equal to two sides of the other, each to each, and have likewise their bases equal ; the angle which is contained by the two sides of the one shall be equal to the angle contained by the two sides equal to them, of - the other.

Let $A B C, D E F$ be two triangles, having the two sides $A B$, $A C$, equal to the two sides $D E, D F$, each to each, viz. $A B^{3}$ to DE, and AC to DF; and also the base $B C$ equal to the base EF. The angle BAC is equal to the angle EDF.
For, if the triangle ABC be
 applied to DEF, so that the point B be on E, and the straight line $B C$ upon $E F$; the point C shall also coincide with the point F. Because

BC is equal to EF ; therefore BC coinciding with EF ; $\mathrm{BA} \underbrace{\text { Boos I. }}$ and $A C$ shall coincide with $E D$ and $D F$; for, if the base $B C$ coincides with the base EF, but the sides BA, CA do not coincide with the sides ED, FD, but have a different situation as EG, FG, then, upon the same base EF, and upon the same side of it, there can be two triangles that have their sides which are terminated in one extremity of the base equal to one another, and likewise their sides terminated in the other extremity: But this is impossible ${ }^{3}$; therefore, if the base BC coincides ${ }^{2} 7.1$. with the base EF, the sides BA, AC cannot but coincide with the sides ED, DE; wherefore likewise the angle BAC coincides with the angle EDF, and is equal ${ }^{\text {b }}$ to it. Therefore if ${ }^{\text {b }} 8$ A $=$ two triangles, \&c. Q. E. D.

PROP. IX. PROB.

ToO bisect a given rectilineal angle, that is, to divide it into two equal angles.

Let $B A C$ be the given rectilineal angle, it is required to bisect it.

Take any point D in $A B$, and from $A C$ cut ${ }^{2}$ off $A E$ equal ${ }^{3} .1$. to $A D$; join $D E$, and upon it describe ${ }^{\text {b }}$ an equilateral triangle $D E F$; then join AF ; the straight line AF bisects the angle BAC.

Because $A D$ is equal to $A E$, and $A F$ is commen to the two triangles DAF, EAF; the two sides DA, AF, are equal to the two sides EA, AF, each to each; and the base DF is equal to the base EF ; therefore the angle $D A F$ is equalc to the angle EAF; wherefore the given rectilineal angle BAC is bisected by the straight line AF. Which was to be done.

PROP. X. PROB.

TO bisect a given finite straight line, that is, to divide it into two equal parts.

Let $A B$ be the given straight line; it is required to divide it into two equal parts.

Describe ${ }^{2}$ upon it an equilateral triangle $A B C$, and bisect ${ }^{2} 1.1$. ${ }^{5}$ the angle $A C B$ by the straight line $C D . A B$ is cut into $t w 0^{\circ} 9.1$. equal parts in the point D.

Because

Boor I. Because AC is equal to CB , and CD common to the two triangles ACD , BCD ; the two sides AC, CD are equal to $B C, C D$, each to each; and the angle $A C D$ is equal to the angle BCD ; therefore the base AD is equal to the c4.1. base ${ }^{c} \mathrm{DB}$, and the straight line AB is divided into two equal parts in the point D. Which was to be done.

PROP. XI. PROB.

TO draw a straight line at right angles to a given straight line, from a given point in the same.
See N. Let AB be a given straight line, and C a point given in it ; it is required to draw a straight line from the point C at right angles to AB .

Take any point D in $A C$, and ${ }^{2}$ make $C E$ equal to $C D$, and
23.1.

- 1. 2. upon DE describe ${ }^{\text {b }}$ the equilateral triangle DFE, and join FC , the straight line FC drawn from the given point C is at right angles to the given straight line $A B$.

Because $D C$ is equal to CE , and FC common to the two
 triangles DCF, ECF ; the two sides DC, CF, are equal to the two EC,CF, each to each; and the base DF is equal to the base EF ; therefore the angle DCF
-s. 1.
${ }^{-} 10$ Def. is equal ${ }^{\text {c }}$ to the angle ECF ; and they are adjacent angles. But, when the adjacent angles which one straight line makes with another straight line are equal to one another, each of them is called a right ${ }^{d}$ angle; therefore each of the angles DCF, ECF, is a right angle. Wherefore, from the given point C, in the given straight line $A B, F C$ has been drawn at right angles to $A B$. Which was to be done.

Cor. By help of this problem, it may be demonstrated, that two straight lines camot have a common segment.

If it be possible, let the two straight lines $\triangle B C, A B D$ have the segment AB common to both of them. Fiom the point B draw BE at right angles to AB ; and because ABC is a straight
line, the angle CBE is equal ${ }^{2}$ to the angle EBA; in the same manner, because ABD is 2 straight line, the angle $D B E$ is equal to the angle $E B A$; wherefore the angle $D B E$ is equal to the angle CBE, the less to the greater; which is impossible ; therefore two straight lines can-
 not have a common segment.

PROP. XII. PROB.

Todraw a straight line perpendicular to a given straight line of an unlimited length, from a given point without it.

Let $A B$ be the given straight line, which may be produced to any length both ways, and let C be a point without it. It is required to draw a straight line perpendicular to $A B$ from the point C.

Take any point D upon the other side of $A B$, and from the centre C , at the distance CD , describe ${ }^{\text {b }}$ the circle EGF meet- \bar{A} ing $A B$ in $F G$; and bisect CFG
 in H , and join $\mathrm{CF}, \mathrm{CH}, \mathrm{CG}$; the straight line CH , drawn from the given point C , is perpendicular to the given straight line AB .

Because FH is equal to HG , and HC common to the two triangles $\mathrm{FHC}, \mathrm{GHC}$, the two sides FH, HC are equal to the two GH, HC, each to each; and the base CF is equald to the 15 Def. base CG; therefore the angle CHF is equal to the angle ${ }_{e}^{1 .} 5.1$. CHG; and they are adjacent angles; but when a straight line standing on a straight line makes the adjacent angles equal to one another, each of them is a right angle; and the straight line which stands upon the other is called a perpendicular to it ; therefore from the given point C a perpendicular CH has been drawn to the given straight line $A B$. Which was to be done.

PROP. XIII. THEOR.

THE angles which one straight line makes with another upon the one side of it, are either two right angles, or are together equal to two right angles.

Book 1. Let the straight line ' AB make with CD , upon one side of it, the angles $\mathrm{CBA}, \mathrm{ABD}$; these are either two right angles, or are together equal to two right angles.

For if the angle CBA be equal to $A B D$, each of them is a

- Def. 10. right ${ }^{2}$ angle; but, if not, from the point B draw BE at right
- 11. 12.

c 2 Ax.
\qquad angles ${ }^{\text {b }}$ to CD ; therefore the angles $\mathrm{CBE}, \mathrm{EBD}$ are.two right angles ${ }^{2}$; and because CBE is equal to the two angles CBA; ABE together, add the angle EBD to each of these equals ; therefore the angles $\mathrm{CBE}, \mathrm{EBD}$ are equal ${ }^{c}$ to the three angles CBA, ABE, EBD. Again, because the angle DBA is equal to the two angles $\mathrm{DBE}, \mathrm{EBA}$, add to these equals the angle ABC , therefore the angles $\mathrm{DBA}, \mathrm{ABC}$ are equal to the three angles $D B E, E B A, A B C$; but the angles $C B E, E B D$ have been demonstrated to be equal to the same three angles; and things that are equal to the same are equald to one another; therefore the angle CBE, EBD are equal to the angles DBA , $A B C$; but $C B E, E B D$ are two right angles; therefore $D B A$, $A B C$ are together equal to two right angles. Wherefore when a straight line, \&ic. Q.E.D.

PROP. XIV. THEOR.

IF, at a point in a straight line, two other straight lines, upon the opposite sides of it, make the adjacent angles, together equal to two right angles, these two straight lines shall be in one and the same straight line.

At the point B in the straight line $A B$, let the two straight lines BC, BD upon the opposite sides of $A B$, make the adjacent angles $A B C, A B D$ equal together to two right angles, BD is in the same straight line with CB.

For, if BD be not in the same $\overline{\mathrm{C}}$ straight line with $C B$, let $B E$ be
in the same straight line with it ; therefore, because the straight line $A B$ makes angles with the straight line CBE, upon one side of i, the angles $\mathrm{ABC}, \mathrm{ABE}$ are together equal ${ }^{2}$ to $t W^{2}=13.1$. right angles; but the angles $\mathrm{ABC}, \mathrm{ABD}$ are likewise together equal to two right angles; therefore the angles $\mathrm{CBA}, \mathrm{ABE}$ are equal to the angles $C B A, A B D$: Take away the common angle $A B C$, the remaining angle $A B E$ is equal ${ }^{b}$ to the re- ${ }^{b}$. As. maining angle $A B D$, the less to the greater, which is impossible; therefore BE is not in the same straight line with $B C$. And, in like manner, it may be demonstrated, that no other can be in the same straight line with it but BD , which therefore is in the same straight line with CB. Wherefore, if at 2 point, \&c. Q. E. D.

PROP. XV. THEOR.

IF two straight lines cut one another, the vertical, or opposite, angles shall be equal.
Let the two straight lines $A B, C D$, cut one another in the point E; the angle $A E C$ shall be equal to the angle $D E B$, and CEB to AED.

Because the straight line AE makes with CD the angles CEA, AED, these angles are together equal ${ }^{2}$ to two right angles.Again, because the straight line $D E$ makes with $A B$ the angles $\mathrm{AED}, \mathrm{DEB}$, these also are together equal ${ }^{2}$ to two right an-
 gles; and CEA, AED, have been demonstrated to be equal to two right angles; wherefore the angles CEA, AED, are equal to the angles AED, DEB. Take away the common angle AED, and the remaining angle CEA is equalb to the remaining angle DEB. In the same manner ${ }^{3}$ 3. Ax. it can be demonstrated, that the angles $\mathrm{CEB}, \mathrm{AED}$ are equal. Therefore, if two straight lines, \&c. Q. E. D.
Cor. I. From this it is manifest, that, if two straight lines cut one another, the angles they make at the point where they cut, are together equal to four right angles.

Cor. 2. And consequently that all the angles made by any number of lines meeting in one point, are together equal to four right angles.

PROP. XVI. THEOR.

IF one side of a triangle be produced, the exterior angle is greater than cither of the interior opposite angles.

Let ABC be a triangle, and let its side BC be produced to D, the exterior angle $A C D$ is greater than either of the interior opposite angles CBA. BAC.
:10. 1.
Bisect ${ }^{2} A C$ in E, join $B E$ and produce it to F , and make EF equal to BE ; join also FC , and produce AC to G.

Because AE is equal to EC , and BE to EF ; AE , EB are equal to CE, EF, each to each; and the angle
-15. 1. AEB , is equal ${ }^{\text {b }}$ to the angle CEF, because they are opposite vertical angles; there-
4. 1. Fore the base $A B$ is equal ${ }^{\text {c }}$ to
 the base CF , and the triangle $A E B$ to the triangle $C E F$, and the remaining angles to the remaining angles, each to each, to which the equal sides are opposite; wherefore the angle BAE is equal to the angle ECF; but the angle ECD is greater than the angle ECF; therefore the angle ACD is greater than BAE: In the same manner, if the side BC be bisected, it may be demonstrated
415. 1. that the angle $B C G$, that is ${ }^{d}$, the angle $A C D$, is greater than the angle ABC. Therefore, if one side, \&c. Q.E.D.

> PROP. XVII. • THEOR.

ANY two angles of a triangle are together less than two right angles.

Let $A B C$ be any triangle; any two of its angles together are less than two right argles.

Produce BC to D ; and because ACD is the exterior angle of the triangle $A B C, A C D$ is
216. 1. greater ${ }^{2}$ than the interior and opposite angle ABC ; to each of

these
these add the angle ACB ; therefore the angles $\mathrm{ACD}, \mathrm{ACB}$ Boox I. are greather than the angles $A B C, A C B$; but $A C D, A C B$ are together oqual ${ }^{\text {b }}$ to two right angles; therefore the angles 013.1 . $\mathrm{ABC}, \mathrm{BCA}$ are less than two right angles. In like manner, it may be demonstrated, that $\mathrm{BAC}, \mathrm{ACB}$, as also $\mathrm{CAB}, \mathrm{ABC}$, are less than two right angles. Therefore any two angles, \&c. Q. E. D.

PROP. XVIII. THEOR.

THE greater side of every triangle is opposite to the greater angle.

Let $A B C$ be a triangle, of which the side AC is greater than the side AB ; the angle ABC is also greater than the angle BCA.

Because AC is greater than $A B$, make $=A D$ equal to $A B$, and join $B D$; and because $A D B$ is the exterior angle of the triangle BDC, it is greater ${ }^{b}$ than

${ }^{5} 16.1$. the interior and opposite angle DCB ; but ADB is equale to c 5.1 . $A B D$, because the side $A B$ is equal to the side $A D$: therefore the angle ABD is likewise greater than the angle ACB . Wherefore much more is the angle ABC greater than ACB . Therefore the greater side, \&ic. Q. E. D.

PROP. XIX. THEOR.

THE greater angle of every triangle is subtended by the greater side, or has the greater side opposite to it.

Let $A B C$ be a triangle, of which the angle $A B C$ is greater than the angle $B C A$; the side $A C$ is likewise greater than the side $A B$.

For, if it be not greater, $A C$, must either be equal to $A B$, or less than it ; it is not equal, because then the angle ABC would be equal ${ }^{2}$ to the angle ACB ; but it is not; therefore AC is not equal to $A B$; neither is it less; because then the angle

THE ELEMENTS

Book I, ABC would be less ${ }^{\text {b }}$ than the angle ACB ; but it is not ;
b 18. 1. therefore the side $A C$ is not less than $A B$; and it has been shewn that it is not equal to $A B$; therefore $A C$ is greater than AB. Wherefore the greater angle, \&c. Q. E.D.

PROP. XX. THEOR.

See N. ANY two sides of a triangle are together greater than the third side.

Let $A B C$ be a triangle; any two sides of it together are greater than the third side, viz. the sides BA, AC greater than the side $B C$; and $A B, B C$ greater than $A C$; and $B C, C A$ greater than AB .

Produce $B A$ to the point D,
3. 1. and make ${ }^{\text {a }} \mathrm{AD}$ equal to AC ; and join DC.

Becanse DA is equal to AC , the angle $A D C$ is likewise equal
${ }^{\text {b 5. 1. }}{ }^{\text {b }}$ to ACD ; but the angle BCD is greater than the angle $A C D ; B$
 therefore the angle BCD is greater than the angle ADC ; and because the angle BCD of the triangle DCB is greater than its angle BDC , and that the
c 19. 1. greater ${ }^{\text {c }}$ side is opposite to the greater angle; therefore the side DB is greater than the side BC ; but DB is equal to BA and AC ; therefore the sides BA, AC are greater than BC . In the same manner it may be demonstrated, that the sides $A B, B C$ are greater than $C A$, and $B C, C A$ greater than $A B$. Therefore any two sides, \&c. Q. E. D.

PROP. XXI. THEOR.

See $N \cdot$ IF, from the ends of the side of a triangle, there be drawn two straight lines to a point within the triangle, these shall be less than the other two sides of the triangle, but shall contain a greater angle.

Let the two straight lines $B D, C D$ be drawn from B, C, the ends of the side BC of the triangle ABC , to the point D within it; BD and DC are less than the other two sides $B A$, AC of the triangle, but contain an angle BDC greater than the angle BAC.

Produce BD to E ; and because two sides of a triangle are greater than the third side, the two sides BA, AE of the tri-
angle ABE are greater than BE . To each of these add EC; Boor I. therefore the sides $B A, A C$ are greater than $\mathrm{BE}, \mathrm{EC}: \mathrm{A}-$ gain, because the two sides CE, ED of the triangle CED are greater than CD , add DB to each of these; therefore the sides CE, EB are greater than CD, DB; but it has been shewn that BA, AC are greater
 than BE, EC, much more then are $B A, A C$ greater than $B D, D C$.

Again, because the exterior angle of a triangle is greater than the interior and opposite angle, the exterior angle BDC of the triangle CDE is greater than CED; for the same reason, the exterior angle CEB of the triangle ABE is greater than BAC ; and it has been demonstrated that the angle BDC is greater than the angle CEB; much more then is the angle BDC greater than the angle BAC. Therefore, if from the ends of, \&c. Q E. D.

PROP. XXII. PROB.

TO make a triangle of which the sides shall be see N . equal to three given straight lines, but any two whatever of these must be greater than the third. ${ }^{2}$ a 20.1 .

Let A, B, C be the three given straight lines, of which any two whatever are greater than the third, viz. A and B greater than C ; A and C greater than B ; and B and C than A . It is required to make a triangle of which the side shall be equal to A, B, C, each to each.

Take a straight line DE terminated at the point D , but unlimited towards E, and make ${ }^{2}$ DF equal to A, FG to B, and $G H$ equal to C ; and from the centre F, at the distance FD, describe ${ }^{b}$ the circle DKL; and from the centre G, at the distance GH, describe ${ }^{b}$ another circle HLK ; and join KF, KG; the triangle

KFG has its sides equal to the three straight lines A, B, C.
Because the point F is the centre of the circle DKL, FD is

THE ELEMENTS.

Boas 1.
c15. Def.
equal ${ }^{e}$ to $F K$; but $F D$ is equal to the straight line A; therefore $F K$ is equal to A : Again, because G is the centre of the circle LKH, GH is equal c to GK ; but GH is equal to C ; therefore also $G K$ is equal to C; ind $F \cdot G$ is equal to B; therefore the three straight lines $\mathrm{KF}, \mathrm{FG}, \mathrm{GK}$, are equal to the three A, B, C: And therefore the triangle KFG has its three sides $K F, F G, G K$ equal to the three given straight lines, A, B, C. Which was to be done.

PROP. XXIII. PROB.

AT a given point in a given straight line, to make a rectilineal angle equal to a given rectilineal angle.

Let AB be the given straight line, and A the given point in it, and DCE the given rectilineal angle ; it is required to make an angle at the given point A in the given straight line AB , that shall be equal to the given rectilineal angle DCE.

Take in CD, CE any points D, E, and 222. 1. join DE; and make ${ }^{2}$ the triangle AFG, the sides of which shall be
 equal to the three straight lines $C D, D E, E C$, so that $C D$ be equal to $A F$, CE to AG, and DE to FG; and because DC, CE are equal to FA, AG, each to each, and the base DE to the base FG;
8. 1. the angle DCE is equal ${ }^{\text {b }}$ to the angle FAG. Therefore, at the given point A in the given straight line $A B$, the angle FAG is made equal to the given rectilineal angle DCE. Which was to be done.

PROP. XXIV. THEOR.

See N. IF two triangles have two sides of the one equal to two sides of the other, each to each, but the angle contained by the two sides of one of them greater than the angle contained by the two sides equal to them, of the other; the base of that which has the greater angle shall be greater than the base of the other.

Let $A B C, D E F$ be two triangles which have the two sides $A B, A C$ equal to the two $D E, D F$, each to each, viz. $A B$ equal to DE , and AC to DF ; but the angle BAC greater than the angle EDF ; the base $B C$ is also greater than the base EF.

Of the two sides DE, DF, let DE be the side which is not greater than the other, and at the point D , in the straight line DE, make ${ }^{2}$ the angle EDG equal to the angle $B A C$; and ${ }^{2}$ 23. 1. make DG equal ${ }^{b}$ to AC or DF , and join EG, GF.

Because AB is equal to DE , and AC to DG , the two sides BA, AC are equal to the two ED, DG, each to each, and the angle $B A C$ is equal to the angle EDG; therefore the base $B C$ is ${ }^{c}$ equal to the base EG; and be. cause $D G$ is equal to DF, the angle DFG is equal ${ }^{d}$ to the angle DGF; but the angle DGF is greater than the an-
 gle EGF ; therefore the angle DFG is greater than EGF ; and much more is the angle EFG greater than the angle EGF ; and because the angle EFG of the triangle EFG is greater than its angle EGF, and that the greater ${ }^{c}$ side is opposite to the greater angle ; the side ${ }^{\mathrm{c}} 19.1$. EG is therefore greater than the side EF ; but EG is equal to $B C$; and therefore also $B C$ is greater than $E F$. Therefore, if two triangles, \&c. Q. E. D.

PROP. XXV. THEOR.

IF two triangles have two sides of the one equal to two sides of the other, each to each, but the base of the one greater than the base of the other; the angle also contained by the sides of that which has the greater base, shall be greater than the angle contained by the sides equal to them of the other.

Let ABC, DEF be two triangles which have the two sides AB, AC equal to the two sides DE, DF, each to each, viz. $A B$ equal to $D E$, and $A C$ to $D F$; but the base $C B$ greater than the base $\mathrm{EF}_{\text {; }}$ the angle BAC is likewise greater than the angle EDF.

For, if it be not greater, it must either be equal to it, or less; but the angle BAC is not equal to the angle EDF, because then the base BC
a 4. 1. would be equal ${ }^{\text {a }}$ to EF: but it is not; therefore the angle BAC is not equal to the angle EDF; neither is it less; because then the base $B C$ would be less

- 24. 25. ${ }^{\text {b }}$ than the base EF; but it is not; there-
 fore the angle BAC is not less than the angle EDF; and it was shewn that it is not equal to it ; therefore the angle BAC is greater than the angle EDF. Wherefore, if two triangles, \&c. Q. E. D.

PROP. XXVI. THEOR.

IF two triangles have two angles of one equal to two angles of the other, each to each; and one side equal to one side, viz. cither the sides adjacent to the equal angles, or the sides opposite to equal angles in each; then shall the other sides be equal, each to each; and also the third angle of the one to the third angle of the other.

Let $\triangle B C, D E F$ be two triangles which have the angles $\mathrm{ABC}, \mathrm{BCA}$ equal to the angles $\mathrm{DEF}, \mathrm{EFD}$, viz. ABC to DEF , and BCA to EFD ; also one side equal to one side ; and first let those sides be équal which are adjacent to the angles that are equal in the two triangles; viz. BC to EF ; the other sides shall beequal, each to each, viz. AB to DE, and AC to DF ; and the third angle BAC to the third angle EDF.
For, if ΛB benot

 equal to $D E$, one of them must be the greater. Let ΛB be the greater of the two, and make BG equal to DE , and join GC ; therefore, because BG is equal to DE , and BC to EF , the two
sides GB, BC are equal to the two DE, EF, each to each; and Book I. the angle GBC is equal to the angle DEF ; therefore the base GC is equal ${ }^{2}$ to the base DF, and the triangle GBC to the tri- 2 4. 1. angle DEF, and the other angles to the other angles, each to each, to which the equal sides are opposite; therefore the angle GCB is equal to the angle DFE; but DFE is, by the hypothesis, equal to the angle $B C A$; wherefore also the angle $B C G$ is equal to the angle $\overline{B C A}$, the less to the greater, which is impossible: therefore $A B$ is not unequal to $D E$, that is, it is equal to it; and BC . is equal to EF ; therefore the two AB, BC are equal to the two DE, EF, each to each; and the angle $A B C$ is equal to the angle DEF ; the base therefore AC is equal ${ }^{2}$ to the base DF, and the third angle BAC to the third angle EDF.

Next, let the sides which are opposite to equal angles in each triangle be equal to one another, viz. AB to DE ; likewise in this case, the other sides shall be equal, $A C$ to $D F$, and $B C$ to EF ; and also the third angle BAC to

 the third EDF.

For, if $B C$ be not equal to $E F$, let $B C$ be the greater of them, and make BH equal to EF , and join AH ; and because $B H$ is equal to $E F$, and $A B$ to $D E$; the two $A B, B H$ are equal to the two DE, EF, each to each; and they contain equal angles ; therefore the base AH is equal to the base DF , and the triangle ABH to the triangle DEF , and the other angles shall be equal, each to each, to which the equal sides are opposite; therefore the angle BHA is equal to the angle EFD ; but EFD is equal to the angle BCA; therefore also the angle BHA is equal to the angle BCA, that is, the exterior angle BHA of the triangle AHC is equal to its interior and opposite angle BCA ; which is impossible ${ }^{\mathrm{b}}$; wherefore BC is not unequal to ${ }^{\circ} 16.1$. $E F$, that is, it is equal to it ; and $A B$ is equal to $D E$; therefore the two, AB, BC are equal to the two DE, EF, each to each ; and they contain equal angles; wherefore the base $A C$ is equal to the base DF, and the third angle BAC to the third angle EDF. Therefore, if two triangles, \&c. Q.E.D;

THE ELEMENTS

PROP. XXVII. THEOR.
IF a straight line falling upon two other straight lines makes the alternate angles equal to one another, these two straight lines shall be parallel.

Let the straight line E F, which falls upon the two straight lines $A B, C D$ make the alternate angles $A E F, E F D$ equal to one another; $A B$ is parallel to $C D$.

For, if it be not parallel, $A B$ and $C D$ being produced shall meet either towards B, D, or towards A, C : let them be produced and meet towards B, D in the point G; therefore $G E F$ is a triangle, and its exterior angle AEF is greater ${ }^{2}$ than the interior and opposite angle EFG; but it is also equal to it, which is impossible; therefore $A B$ and $C D$ being produced do not meet towards B, D. In like manner it may be demonstrated, that they do not meet towards A,
 \mathbb{C}; but those straight lines which meet neither way, though produced ever so far, are parallel ${ }^{b}$ to one another. $A B$ therefore is parallel to $C D$. Wherefore, if a straight line, \&c. Q. E. D.

PṘOP. XXVIII. THEOR.

IfF a straight line falling upon two other straight lines makes the exterior angle equal to the interior and opposite upon the same side of the line ; or makes the interior angles upon the same side together equal to two right angles; the two straight lines shall be parallel to one another.

Let thestraight line EF, which falls upon the two straight lines $A B, C D$, make the exterior angle EGB equal to the interior and opposite angle GHD upon the same side; or make the interior angles on the same side BGH, GHDtogether equal to two right angles $; A B$ is parallel to $C D$.

Because the angle EGB is equal to the angle GHD, and the

angle EGB equal ${ }^{2}$ to the angle AGH, the angle AGH is Boos 1. equal to the angle GHD; and they are the alternate angles; 15.1 . therefore AB is parallel ${ }^{b}$ to CD. Again, becaufe the angles ${ }^{\circ} 27.1$. $\mathrm{BGH}, \mathrm{GHD}$ are equalc to right angles; and that AGH, ${ }^{\text {c By Hip. }}$ BGH are alfo equald to two right angles; the angles $\mathrm{AGH},{ }^{d} 13.1$. BGH are equal to the two angles BGH, GHD: Take away the common angle BGH; therefore the remaining angle AGH is equal to the remaining angle GHD; and they are alternate angles; therefore $A B$ is parallel to $C D$. Wherefore if a Itraight line, \&ic. Q. E. D.

PROP. XXIX. THEOR.

I_{F}F a straight line fall upon two parallel straight not he ber lines, it makes the alternate angles equal to one this propoanother; and the exterior angle equal to the interior and opposite upon the sane side; and likewise the two interior angles upon the same side together equal to two right angles.
Let the ftraight line EF fall upon the parallel ftraight lines AB, CD; the alternate angles $\mathrm{AGH}, \mathrm{GHD}$ are equal to one another; and the exterior angle EGB is equal to the interior and oppofite, upon the fame fide, GHD ; and the two interior angles BGH, GHD upon the fame fide, are together equal to two right angles.
For, if AGH be not equal to GHD, one of them mult be greater than the other; let AGH be the greater; and becaufe the angle AGH
 is greater than the angle GHD, add to each of them the angle BGH ; therefore the angles AGH, BGH are greater than the angles BGH, GHD ; but the angles AGH, BGH are equal ${ }^{2}$ to two right angles; therefore the a 13.1 . angles BGH, GHD are lefs than two right angles ; but those ftraight lines which, with another ftraight line falling upon them, make the-interior angles on the fame fide lefs than two right angles, do mee** together if continually produced; therefore * 12. Ax. the ftraight lines $A B, C D$, if produced far enough, fhall meet; ; Setethe but they never meet, fince they are parallel by the hypothefis; nthis propotherefore the angle $A G H$ is not unequal to the angle $G H D$, that sition. is, it it equal to it ; but the angle AGH is equalb to the angle 0 . 15 . I. EGB ; therefore likewife EGB is equal to GHD ; add to each

Book 1. of thefe the angle BGH ; therefore the angles EGB, BGH are ©13.1. equal to the angles $\mathrm{BGH}, \mathrm{GHD}$; but $\mathrm{EGB}, \mathrm{BGH}$ are equal ${ }^{\circ}$ to two right angles; therefore alfo $\mathrm{BGH}, \mathrm{GHD}$ are equal to two right angles. Wherefore, if a ftraight, \&cc. Q. E. D.

PROP. XXX. 'THEOR.

STRAIGHT lines which are parallel to the same straight line are parallel to one another.

Let $A B, C D$ be each of them parallel to $E F$; $A B$ is alfo parallel to CD.

Let the ftraight line GHK cut $\mathrm{AB}, \mathrm{EF}, \mathrm{CD}$; and becaufe GHK cuts the paralle! ftraight lines $A B, E F$, the angle $A G H$
:29. 1. is equal ${ }^{2}$, to the angle GHF. Again, becaufe the ftraight line GK cuts the parallel ftraight liness EF, CD, the angle GHF is equal 2 to the angle GKD ; and it was fhewn that the angle AGK is equal to the angle GHF ; therefore alfo AGK is
 equal to GKD ; and they are
27. 1. alternate angles; therefore $A B$ is parallel ${ }^{b}$ to CD. Wherefore ftraight lines, \&c. Q. E. D.

PROP. XXXI. PROB.

TO draw a straight line through a given point pa${ }^{r}$ allel to a given straight line.

Let A be the given point, and BC the given ftraight line; it is required to draw a ftraight line through the point A , parallel to the Atraight line BC.

In BC take any point D , and join AD ; and at the point A , in the
Q 23.1. ftraight line AD, make the angle
 DAE equal to the angle ADC; and produce the ftraight line EA to F.

Becaufe the ftraight line $A D$, which meets the two ftraight lines BC, EF, makes the alternate angles $\mathrm{EAD}, \mathrm{ADC}$ equal to one another, EF is parallel ${ }^{\text {b }}$ to BC . Therefore the ftraight
line EAF is drawn through the given point A parallel to the Book I. given ftraight line BC. Which was to be done.

PROP. XXXII. THEOR.

IF a side of any triangle, be produced, the exterior angle is equal to the two interior and opposite angles; and the three interior angles of every triangle are equal to two right angles.

Let $A B C$ be a triangle, and let one of its fides $B C$ be produced to D ; the exterior angle ACD is equal to the two interior and oppofite angles $\mathrm{CAB}, \mathrm{ABC}$, and the three interior angles of the triangle, viz. $\mathrm{ABC}, \mathrm{BCA}, \mathrm{CAB}$, are together equal to two right angles,

Throughthe pointCdraw CE parallel ${ }^{2}$ to the ftraight line $A B$; and becaufe $A B$ is parallel to $C E$, and $A C$ meets them, the alternate angles $B A C$, ACE are equal ${ }^{\text {b }}$. Again, becaure $A B$ is parallel to $C E$, and $B D$ falls upon B
 them,theexteriorangleECD is equal to the interior andoppofite angle ABC ; but the angle ACE was fhewn to be equal to the angle $B A C$; therefore the whole exterior angle $A C D$ is equal to the two interior and oppofite angles $C A B$, ABC ; to thefe equals add the angle ACB , and the angles ACD , ACB are equal to the three angles $\mathrm{CBA}, \mathrm{BAC}, \mathrm{ACB}$; but the angles $A C D, A C B$, are equalc to two right angles; therefore c 13.1 : alfo the angles CBA, $\mathrm{BAC}, \mathrm{ACB}$ are equal to two right angles. Wherefore if a fide of a triangle, \&c. Q. E. D.

Cor. I. All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as -many right angles as the figure has fides.
For any rectilineal figure ABCDE can be divided into as many triangles as the figure has fides, by drawing ftraight lines from a point F within the figure to each of its angles.
 And, by the preceding propofition,

Boox 1. all the angles of these triangles are equal to twice as many right angles as there are triangles, that is, as there are sides of the figure; and the same angles are equal to the angles of the figure, together with the angles at the point F, which is
${ }^{2} 2$ Cor. the common vertex of the triangles: that is ${ }^{2}$, together with
15. 1. four right angles. Therefore all, the angles of the figure, together with four right angles, are equal to twice as many right angles as the figure has sides.

COR. 2. All the exterior angles of any rectilineal figure are together equal to four right angles.

Because every interior angle $A B C$, with its adjacent exterior -13.1. ABD, is equal ${ }^{\circ}$ to two right angles; therefore all the interior together with all the exterior angles of the figure, are equal to twice as many right angles as there are sides of the figure; \bar{D} that is, by the foregoing corol-
 lary, they are equal to all the interior angles of the figure, together with four right angles; therefore all the exterior angles are equal to four right angles.

PROP. XXXIII. THEOR.

THE straight lines which join the extremities of two equal and parallel straight lines, towards the same parts, are also themselves equal and parallel.

Let $A P, C D$ be equal and parallel straight lines, and joined towards the same parts by the straight lines $\triangle \mathrm{C}, \mathrm{BD} ; \Lambda \mathrm{C}, \mathrm{BD}$ are also equal and parallel.

Join $B C$; and because $A B$ is parallel to $C D$, and $B C$ meets

229. 1. them, the alternate angles $\mathrm{ABC}, \mathrm{BCD}$ are equal ${ }^{\text {; }}$; and because $A B$ is equal to $C D$, and $B C$ common to the two triangles $A B C$, DCB , the two sides AB, BC are equal to the two DC, CB; and the angle $\triangle B C$ is equal to the angle $B C D$; therefore the
D. 1. base $A C$ is equal ${ }^{b}$ to the base $B D$, and the triangle $A B C$ to the triangle BCD , and the other angles to the other angles ${ }^{b}$, each to each, to which the equal sides are opposite; therefore the
angle ACB is equal to the angle CBD ; and becaule the Atraight line $B C$ meets the two itraight lines $A C, B D$, and makes the alternate angles $\mathrm{ACB}, \mathrm{CBD}$ equal to one another, $A C$ is parallelc to $B D$; and it was thewn to be equal to it. ${ }^{c} 2=$:. Therefore, ftraight lines, \&ic. Q E. D.

PROP. XXXIV. THEOR.

THE opposite sides and angles of parallelograms are cqual to one another, and the diameter bisects them, that is, divides them into two equal parts.
N. B. A parallelogram is a four-sided figure, of which the oppositesides are parallel; and the diameter is the straight line joining two of its opposite angles.
Let $A B C D$ be a parallelogram, of which $B C$ is a diameter ; the oppofite fides and angles of the figure are equal to one another ; and the diameter BC bifects it.
Becaufe $A B$ is parallel to $C D$, and BC meets them, the alte:nate angles $A B C, B C D$ are equal ${ }^{2}$ to one another; and becaufe $A C$ is parallel to $B D$, and $B C$ meets them, the alternate angles $\mathrm{ACB}, \mathrm{CBD}$ are equala ${ }^{2}$ to one
 another; wherefore the two triangles $\mathrm{ABC}, \mathrm{CBD}$ have two angles $\mathrm{ABC}, \mathrm{BCA}$ in one, equal to two angles $\mathrm{BCD}, \mathrm{CBD}$ in the other, each to each, and one fide BC common to the two triangles, which is adjacent to their equal angles; therefore their other fides thall be equal, each to each, and the third angle of the one to the third angle of the other, ${ }^{b}$ viz. the fide ${ }^{\mathrm{b}} \mathrm{O}$. 1. $A B$ to the fide $C D$, and $A C$ to $B D$, and the angle $B A C$ equal to the angle $B D C$: And becaufe the angle $A B C$ is equal to the angle $B C D$, and the angle $C B D$ to the angle $A C B$, the whole angle ABD is equal to the whole angle ACD : And the angle BAC has been thewn to be equal to the angle BDC ; therefore the oppofite fides and angles of parallelograms are equal to one another; alfo, their diameter bilects them; for AB being equal to $C D$, and $B C$ common, the two $A B, B C$ are squa! to the two $D C, C B$, each to each; and the angle $A B C$

Boox I.
c 4.1 .
is equal to the angle $B C D$; therefore the triangle $A B C$ is equale to the triangle BCD , and the diameter BC divides the parallelogram $A C D B$ into two equal parts. Q.E.D.
PROP.. XXXV. THEOR.

See N .

See the 2d and 3d 1 gures. 1
-34. 1.

Ax.
© 2 . or 3. A.
the two FD, DC, each to each; and the exterior angle FDC is

Let the parallelograms $A B C D, E B C F$ be upon the fame bafe BC , and between the fame parallels AF, BC; the parallelogram $A B C D$ fhall be equal to the parallelogram EBCF.

If the fides $A D, D F$ of the parallelograms ABCD, DBCF, oppofite to the bafe $B C$, be terminated in the farne point D; it is plain that each of the parallelograms is double ${ }^{2}$ of the triangle BDC ; and they are therefore equal to one another.

But, if the fides AD, EF, oppofite B
 to the bafe BC of the parallelograms $\mathrm{ABCD}, \mathrm{EBCF}$, be not terminated in the fame point ; then, becaufe ABCD is a parallelogram, AD is equal ${ }^{\text {a }}$ to BC ; for the fame reafon $E F$ is equal to $B C$; wherefore $A D$ is equal ${ }^{b}$ to EF ; and DE is common ; therefore the whole, or the remainder, AE is equal ${ }^{\mathrm{c}}$ to the whole, or the remainder $\mathrm{DF} ; \mathrm{AB}$ alfo is equal to DC ; and the two EA, AB are therefore equal to
 the bafe FC , and the triangle EAB equalc to the triangle FDC : take the triangle FDC from the trapezium ABCF , and from the fame trapezium take the triangle EAB : the remainders therefore are equal ${ }^{f}$, that is, the parallelogram $A B C D$ is equal

PArallelograms upon the same base, and between the same parallels, are equal to one another. to the parallelogram EBCF. Therefore parallelograms upon the fame bale, \&ic. Q. E. D.

PROP. XXXVI. THEOR.

Parallelograms upon equal bases, and between the same parallels, are equal to one another.
Lee ABCD, EFGH be parallelograms upon equal bases BČ, FG, and between the same parallels AH, BG; the paralkelogram ABCD is equal to EFGH.
Juin BE, CH; and be- B
 cause $B C$ is equal to $F G$, and $F G$ to ${ }^{2} E H, B C$ is equal to ${ }^{234}$. 1 . EH ; and they are parallels, and joined towards the same parts by the straight lines BE, CH : But straight lines which join equal and parallel straight lines towards the same parts, are themselves equal and parallel ; ${ }^{\circ}$ therefore EB, CH, are both ${ }^{\circ}$ 33.1. equal and parallel, and EBCH is a parallelogram ; and it is equal to ABCD , because it is upon the same base BC , and ‘ 35.1 . between the same parallels BC, AD : For the like reason, the parallelogram EFGH is equal to the same EBCH : Therefore also the parallelogram ABCD is equal to EFGH.Wherefore parallelograms, \&8. Q. E. D.

PROP. XXXVII. THEOR.

TRIANGLES upon the same base, and between the same parallels, are equal to one another.

Let the triangles $\mathrm{ABC}, \mathrm{DBC}$, be upon the same base BC , and between the same parallels $A D, B C$: The triangle $A B C$ is equal to the triangle $D B C$.

Produce AD both ways to the points E, F, and through B draw ${ }^{2} \mathrm{BE}$ parallel to CA ; and through C draw CF parallel to BD : Therefore each
 of the firgures EBCA, DBCF is a parallelogram; and EBCA is equal ${ }^{\text {b }}$ to DSCF , becanse they are upon the same .base $\mathrm{BC},{ }^{0} 35.1$. . and between the same parallels BC, EF; and the triangle $A B C$ is the half of the parallelogram, EBCA, because the

THE ELEMENTS

Book I. C34.1.
$d 7$ Ax.

PROP. XXXVIII. THEOR.

T RIANGLES upon equal bases, and between the same parallels, are equal to one another.

Let the triangles $A B C$, $D E F$ be upon equal bases $B C, E F$, and between the same parallels BF, AD : The triangle ABC is equal to the triangle DEF .

Produce $A D$ both ways to the points G, H, and through B draw BG parallel ${ }^{3}$ to CA , and through F draw FH paral-
31. 1.

- 36.1.
e 34. 1.
d7. Ax.

7. Ax. lel to ED : Then each of the figures GBCA, DEFH, is a parallelogram;'and they are equal tot one another, because they are upon equal bases BC, EF, and between the same
 parallels $B F, \mathrm{GH}$; and the triangle ABC is the half c of the parallelogram GBCA, because the diameter AB bisects it ; and the triangle DEF is the halfc of the parallelogram DEFH, because the diameter DF bisects it : But the halves of equal things are equal ;id therefore the triangle ABC is equal to the triangle DEF. Wherefore triangles, \&c. Q.E.D.

PROP. XXXIX: THEOR.

EQUAL triangles upon the same base, and upon the same side of it, are between the same parallels.

Let the equal triangles $A B C, D B C$ be upon the same base $B C$, and upon the same side of it; they are between the same parallels.

Join $A D ; A D$ is parallel to $B C$; for, if it is not, through -31. \%. the point A draw ${ }^{2} \mathrm{AE}$ parallel to BC , and join EC : The

QF EUCLID.

triangle $A B C$ is equal ${ }^{b}$ to the triangle EBC, because it is upon the same base BC , and between the same parallels BC, AE : But the triangle ABC is equal to the triangle BDC ; therefure also the triangle $\overline{B D C}$, is equal to the triangle EBC, the greater to the less, which is impossible: Therefore AE is
 not parallel to BC . In the same manner, it can he demonstrated, that no other line but AD is parallel to $\mathrm{BC}^{\prime} ; \mathrm{AD}$ is therefore parallel to it. Wherefore equal triangles upon, \&ic. Q. E. D.

PROP. XL. THEOR.

EQUAL triangles upon equal bases, in the same straight line, and towards the same parts, are between the same parallels.

Let the equal triangles $\mathrm{ABC}, \mathrm{DEF}$ be upon equal bases BC , EF , in the same straight line $B F$, and towards the same parts; they are between the same parallels. Join AD ; AD is parallel to BC : For, if it is not, through A draw ${ }^{2}$ AG parallel to BF , and join

GF: The triangle $A B C$ is equalb to the triangle GEF, be- - 5 s. 1. cause they are upon equal bases BC, EF, and between the same parallels BF, AG : But the triangle $A B C$ is equal to the triangle DEF; therefore also the triangle DEF is equal to the triangle GEF, the greater to the less, which is impossible: Therefore AG is not parallel to BF: And in the same manner it can be demonstrated that there is no other parallel to it but AD, AD is therefore parallel to BF . Wherefore equal triangles, \&cc. Q. E. D،

PROP. XLI. THEOR.

IF a parallelogram and triangle be upon the same base, and between the same parallels ; the parallelogram shall be double of the triangle.

THE ELEMENTS

Book I.
Let the paralletogram ABCD and the triangle EBC be upon the same base BC , and between the same parallels BC, AE; the parallelogram ABCD is double of A the triangle EBC.

Join, $A C$; then the triangle $A B C$ is
237.1. equal ${ }^{\text {a }}$ to the triangle EBC , because they are upon the same base BC, and between the same parallels $B C, A E$. But the parallelogram $A B C D$ is double ${ }^{b}$ of the triangle $A B C$, because the diameter AC divides it into two
 cqual parts; wherefore ABCD is also double of the triangle EBC. , Therefore, if a parallelogram, \&c. Q. E. D.

PROP. XLII. PROB.

To to a given triangle, and have one of its angles equal to a given rectilincal angle.

Let ABC be the given triangle, and D the given rectilineal angle. It is required to describe a parallélogram that shall be equal to the given triangle ABC , and have one of its angles equal to D.

Bisect ${ }^{3} B C$ in E, join $A E$, and at the point E in the straight
2 10.1.
b 23.1.
c 31.1.

4 38.1. I is likewise equald to the triangle AEC , since they are upon equal bases BE, EC, and between the same parallels BC, AG; therefore the triangle ABC is double of the triangle AEC . And the parallelogran FECG is likewise doublee of the triangle AEC, because it is upon the same base, and between the same parallels: Therefore the parallelogran3 FECG is equal to the triangle $A B C$, and it has one of its angles CEF equal to the giveil angle D; whereforc there has been described á parallel-
ogram FECG equal to a given triangle ABC , having one of Book I. its angles CEF equal to the given angle D. Which was to be done.

PROP. XLIII. THEOR.

THE complements of the parallelograms, which are about the diameter of any parallelogram, are equal to one another.
L.t $A B C D$ be a parallelogram, of which the diameter is AC , and $上 \mathrm{H}, \mathrm{FG}$, and parailelograms ab ut AC , that is throust wubi, b AC passes, and BK, KD, the other paralielograms wh ch make up the whole figure $A B C D$, which are therefore called the complements: The complement BK is equal to the complement KD.

Because $A B C D$ is a parallelogram, and $A C$ its diameter, the triangle ABC 15 equal' to the triangle ADC : And, because EKHA is a parallelogram, the diameter of which is AK, the triangle $A E K$ is equal to the triangle $A H K$: By the same reason, the triangle K GC is equal to the triangle KFC: Then, because the triangl: AEK is equal to the triangle AHK, and the triangle KGC to KFC ; the triangle AEK , together with the triangle KGC is equal to the triangle AHK together with the triangle KFC: But, the whole triangle ABC is equal to the whole ADC ; theretore the remaining complement BK is equal to the remaining complement KD. Wherefore the complements, \&c. Q.E. D.

PROP. XLIV. PROB.

To a given straight line to apply a parallelogram, which shall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.

Let $A B$ be the given straight line, and C the given triangle, and D the given rectilineal angle. It is required to apply to the straight line AB a parallelograne equal to the triangle C , and having an angle equal to D .

Male

Bóok I. - 42. 1. parallelogram BEFG equal to the triangle C , and having the angle EBG equal to the angle D, so that BE be in the same
 straight line with AB , and produce FG to H ; and through A b31.1. draw ${ }^{\text {b }} \mathrm{AH}$ parallel to BG or EF , and join HB . Then because the straight line HF falls upon the parallels AH, EF,
$=$ 29. 1. the angles $\mathrm{AHF}, \mathrm{HFE}$, are together equalc to two right angles; wherefore the angles $\mathrm{BHF}, \mathrm{HFE}$ are less than two right angles: But straight lines which with another straight line make the interior angles upon the same side less than two right
\therefore 12. Ax. angles, do meet ${ }^{\text {d }}$ if produced far enough: Therefore HB, FE shall meet if produced; let them meet in K , and through K draw KL, parallel to EA or FH, and produce HA, GB to the points L, M: Then HLKF is a parallelogram, of which the diameter is HK , and AG, ME are the parallelograms about
e 43.1. HK ; and $L B, B F$ are the complements: therefore $L B$ is equale to BF ; But BF is equal to the triangle C ; wherefore LB is
515. 1. , equal to the triangle C; and because the angle $G B E$ is equal ${ }^{f}$ to the angle ABNI , and likewise to the angle D ; the angle $A B M$ is equal to the angle D : Therefore the parallelogram LB is applied to the straight line $A B$, is equal to the triangle C, and has the angle $A B M$ equal to the angle D : Which was to be done.

PROP. XLV. PROB.

See N. TO describe a parallclogram equal to a given rectilineal figure, and having an angle equal to a given rectilineal angle.

Let $A B C D$ be the given rectilineal figure, and E the given rectilineal angle. It is required to describe a parallelogram equal to $A B C D$, and having an angle equal to E.
242. 1.

Join DB, and describe ${ }^{3}$ the parallelogram $F H$ equal to the triangle ADB , and having the angle HKF equal to the angle

- 01..1. E; and to the straight line GH apply the parallelogram GM equal
equal to the triangle DBC, having the angle GHM equal to Boos I. the angle E; and because the angle E is equal to each of the angles FKH, GHM, the angle FKH is equal to GHM : add to each of these the angle KHG; therefore the angles FKH, KHG are equal to the angles KHG, GHM ; but FKH,KHG are equal ${ }^{c}$ to two rightangles; Therefore also KHG, GHM, are equal to two right angles; and
 because at the point H in the straight line $G H$, the two straight lines KH, HM, upon the opposite sides of it make the adjacent angles equal to two right angles, KH is in the same straight line ${ }^{d}$ with HM; and because the straight line ${ }^{\text {d }} 14.1$. HG meets the parallels KM, FG, the alternate angles MHG , HGF are equal : Add to each of these the angle HGL: Therefore the angles MHG, HGL, are equal to the angles HGF, HGL: But the angles $\mathrm{MHG}, \mathrm{HGL}$, are equal ${ }^{\text {c }}$ to two right angles; wherefore also the angles HGF, HGL are equal to two right angles, and FG is therefore in the same straight line with GL ; and because KF is parallel to HG, and HG to ML ; KF is parallele to ML; and KM, FL are pa-e 30.1 . rallels; wherefore KFLM is a parallelogram; and because the triangle ABD is equal to the parallelogram HF , and the triangle DBC to the parallelogram G.M; the whole rectilineal figure ABCD is equal to the whole parallelogram KFLM; therefore the parallelogram KFLM has been described equal to the given rectilineal figure ABCD , having the angle $\mathrm{FK} M$ equal to the given angle E. Which was to be done.

Cor. From this it is manifest how to a given straight line to apply a parallelogram, which shall have an angle equal to a given rectilineal angle, and shall be equal to a given rectilineal figure, viz. by applying to the given straight line a parallel-044. 1. ogram equal to the first triangle $A B D_{2}$ and having an angle squal to the given angle.

Book I.

PROP. XLVI. PROB.

Tdescribe a square upon a given straight line.
Let $A B$ be the given straight line; It is required to describe a square upon $A B$.
-11. 1.
From the point A draw $A C$ at right angles to $A B$; and
b 3. 1.
c 31. 1.
d 34. 1.
e 29.1. make ${ }^{b} \cdot A D$ equal to $A B$, and through the point D draw $D E$ parallec to $A B$, and through B draw $B E$ parallel to $A D$; therefore ADEB is a parallelogram : whence AB is equald to $D E$, and $A D$ to $B E$: But BA is equal to ' $A D$; therefore the four straight lines $\mathrm{BA}, \mathrm{AD}, \mathrm{DE}, \mathrm{EB}$ are equal to one another, and the parallelogram ADEB is equilateral, likewise all its angles are right angles; because the straight line AD meeting the parallels AB, DE, the angles $\mathrm{BAD}, \mathrm{ADE}$ are equale to two right angles : but BAD is a right angle; therefore also ADE is a right angle ; but the opposite angles of paral- $A \square B$ lelograms are equal ; ${ }^{d}$ therefore each of the opposite angles $\mathrm{ABE}, \mathrm{BED}$ is a-right angle'; wherefore the figure ADEB is rectangular, and it has been demonstrated that it is equilateral; it is therefore a square, and it is described upon- the given straight line $A B$: Which was ta be done.

Cor. Hence every parallelogram that has one right angle has all its angles right angles.

PROP. XLVII. THEOR.

IN any right-angled triangle, the square which is described upon the side subtending the right angle, is equal to the squares described upon the sides which contain the right angle.
Let ABC be a right-angled triangle having the right angle $B A C$; the square described upon the side $B C$ is equal to the squares described upon BA, AC.
=46.1.

-

OFEUCCLD.

squares GB, HC; and through A draw ${ }^{\mathrm{b}} \mathrm{AL}$ parallel to $\mathrm{BD}, \underbrace{\text { Boos } \mathrm{I}}$. or CE, and join AD, FC; then, because each of the angles 031.1 . $\mathrm{BAC}, \mathrm{BAG}$ is a right angle ${ }^{c}$, the two straight lines AC, AG , upon the opposite side; of $A B$, make with it at the point A she adjacent angles equal to two right angles; therefore CA is in the same straight line ${ }^{\text {d }}$ with AG ; for the same reason, AB and AH are is the same straight line; and because the angle DBC is equal to the anyle $F B A$, each of them being a right ancle, add to eaćh the angle $A B C$,
 and the whole angle DBA is eqqual ${ }^{c}$ to the whole $F B C$; and ${ }^{e} 2 A x$. becauṣe the two sides AB, BD are equal to the two FB, BC, each to each, and the angle DBA equal to the angle FBC ; therefore the base $A D$ is equal ${ }^{f}$ to the base FC , and the trian-f4. 1 . gle $A B D$ to the iriangle $F B C$: Now the parallelogram $B L$ is double 8 of the triangle ABD , because they are upon the same 8 41. 1. base BD , and between the same parallels, BD, AL; and the square GB is double of the triancte FBC , because these also are upon the same base FB , and between the same parallels FB, GC. But the doubles of equals are equal ${ }^{\text {h }}$ to one ano- n. de ther: Therefore the parallelogram BL is equal to the square GB: And, in the same manner, by joining $A E, B K$, it is demonstrated, that the parallelogram $C L$ is equal to the square HC: Therefore the whole square BDEC is equal to the two squares $G B, H C$; and the square $B D E C$ is described upon the straight line BC , and the squares GB, HC upon BA, AC : Wherefore the square upon the side $B C$ is equal to the squares upon the sides BA, AC. Therefore, in any right-angled triangle, \&ic. Q. E. D.

PROP. XLVIII. THEOR.

IF the square described upon one of the sides of a triangle, be equal to the squares described upon the other two sides of it; the angle contained by these iwo sides is a right angle.

Book I. If the square described upon BC , one of the sides of the triangle ABC , be equal to the squares upon the other sides BA , $A C$, the angle $B A C$ is a right angle.
-11. 1. From the point A draw a $A D$ at right angles to $A C$, and make AD equal to BA , and join DC : Then, because DA is equal to $A B$, the square of $D A$ is equal to the squares of $A B$: To each of these add the square of $A C$; therefore the squares of DA, AC are equal to the squares of
-47. 1. $B A, A C$: But the square of $D C$ is equal ${ }^{b}$ to the squares of $D A, A C$, because DAC is a right angle; and the square of ${ }^{-} \mathrm{BC}$, by hypothesis, is equal to the squares of BA, AC; therefore the square of DC is cqual to the square of $B C$; and therefore
 also the side DC is equal to the side BC. And because the side $D A$ is equal to $A B$, and $A C$ common to the two triangles $D A C, B A C$, the two $D A, A C$ are equal to the two $B A, A C$; c.8. 1. DAC is equal c to the angle BAC; but DAC is a right an gle; therefore also BAC is a right angle. Therefore, if the square, \&c. Q. E. D.

ELEMENTS

OE

EUCLID.

BOOK. II.
DEFINITIONS.

I.

FVERY right angled parallelogram is said to be contained by any two of the straight lines which contain one of the right angles.
II.

In every parallelogram, any of the parallelograms a bout a diameter, together with the two complements, is called a Gnomon. 'Thus the parallelo6 gram HG, together with the - complements AF, FC, is the ' gnomon, which is more - briefly expressed by the let' ters AGK, or EHC, which ' are at the opposite angles of

' the parallelograms which make the guomon.'

PROP:I, THEOR.

IF there be two straight lines, one of which is divided into any number of parts; the rectangle contained by the two straight lines, is equal to the rectangles contained by the undivided line, and the several parts of the divided line.

Boorं II. Let A and BC be two straight lines; and let BC be divided into any parts in the points D, E; the rectangle contained by the straightlines A, BC is equal to the rectangle contained by A, BD, together with that contained by A, DE, and that contained by A, EC.
211. 1. From the point B draw ${ }^{3} \mathrm{BF}$; at right angles to BC , and make
-3. 1. $B G$ equal ${ }^{b}$ to A; and through
© 31. 1. Gdraw ${ }^{\text {c }}$ GH parallel to $B C$;
 and through $\mathrm{D}, \mathrm{E}, \mathrm{C}$, draw ${ }^{\text {c }} \mathrm{DK}, \mathrm{EL}, \mathrm{CH}$ parallel to BG ; then the rectangle BH is equal to the rectangles BK, DL, EH ; and BH is contained by A, BC, for it is contained by GB, BC, and GB is equal to A ; and BK is contained by A, BD, for it is contained by GB, BD, of which GB is equal to A ; and DL is contained by A, DE, because
-35. 3. DK, that is ${ }^{d} \mathrm{BG}$, is équal to A ; and in like manner the rectangle EH is contained by A, EC : Therefore the rectangle contained by A, BC, is equal to the several 'rectangles contained by A, BD, and by A, DE ; and also by A, EC. Wherefore, if there be swo straight lines, \&rc. Q. E. D.

PROP. II. THEOR.

IF a straight line be divided into any two parts, the rectangles contained by the whole and each of the parts, are together equal to the square of the whole line.

Iet the straight line $A B$ be divided into any two parts in the point C; the rectangle contained by AB, BC; together with the rectangle* $A B, A C$, shall be equal to the square of $A B$.

Upon $A B$ describe ${ }^{2}$ the square ADEB, and through C draw b $C F$, parallel to AD or BE ; then AE is cqual to the rectangles AF, CE; and AE is
 the square of $A B$; and $A F$ is the rectangle contained by $B A$, $A C$; for it is contained by $D A, A C$ of which $A D$ is equal

[^0]to AB ; and CE is contained by AB, BC, for BE is equal to Boox 11 . AB ; therefore the rectangle contained by AB, AC, together with the rectangle $A B, B C$, is equal to the square of $A B$. If sherefore a straight line, \&ic. Q. E. D.

PROP. III. THEOR.

EF a straight line be dicided into any two parts, the rectangle contained by the whole and one of the parts, is equal to the rectagle contained by the two parts, together with the square of the aforesaid part.

Let the straight line $A B$ be divided into two parts in the point C; the rectangle $A B, B C$, is equal to the rectangle $A C$, CB , together with the square of BC .

Upon BC describe ${ }^{2}$ the square $C D E B$, and produce ED to F, and through A draw ${ }^{\text {b }} \mathrm{AF}$ parallel to CD or BE ; then the rectangle AE is equal to the rectangles $A D, C E$; and AE is the rectangle contained by AB, BC, for it is contained by, $A B, B E$, of which $B E$ is equal to BC ; and AD is contained by AC ,
 $C B$, for $C D$ is equal to $B C$; and $D B$ is the square of $B C$; therefore the rectangle $A B, B C$, is equal to the rectangle $A C$, $C B$, together with the square of $B C$. If therefore a straight line, \&ic. Q. E. D.

PROP. IV. THEOR.

I
F a straight line be divided into any two parts, the square of the whole line is equal to the squares of the two parts, together with twice the rectangle oontained by the parts.

Let the straight line AB be divided into any two parts in C; the square of $A B$ is equal to the squares of $A C, C B$, and to twice the rectangle contained by AC, CB.

THE ELEMENTS

Boos 1t. Upon $A B$ describe a the square $A D E B$, and join $B D$, and
= 46. 1 .
b 31.1.
e 29.1.
d5. 1.
e 6.1.
§ 34.1. through C draw ${ }^{\text {b }}$ CGF parallel to AD or BE , and through G draw HK parallel to $A B$ or DE: And because CF is parallel to $A D$, and $B D$ falls upon them, the exterior angle $B G C$ is equal to the interior and opposite angle ADB ; but ADB is equal d to the angle $A B D$, because $B A$ is equal to $A D$, being sides of a square; wherefore the angle CGB is equal to the angle GBC; and therefore the side $B C$ is equal ${ }^{\circ}$ to the side CG: But CB is equal ${ }^{\frac{f}{f}}$ also to GK, and CG to BK; wherefore the figure CGKB is equilateral: It is likewise rectangular; for CG is parallel to BK , and CB meets them; the angles $\mathrm{KBC}, \mathrm{GCB}$ are therefore
 equal to two right angles; and KBC is a right angle ; wherefore GCB is a right angle ; and therefore also the angles ${ }^{f}$ CGK, GKB opposite to these, are right angles, and CGKB is rectangular; but it is also equilateral, as was demonstrated ; wherefore it is a square, and it is upon the side CB : For the same reason HF also is a square, and it is upon the side HG , which is equal to AC : Therefore HF, CK are the squares of AC, CB; and because the complement AG is equal g to the complement GE, and that $A G$ is the rectangle contained by AC, CB, for GC is equal to CB ; therefore GE is also equal to the rectangle AC, CB; wherefore AG, GE are equal to twice the rectangle AC, CB : And HF, CK are the squares of AC, CB; wherefore the four figures HF, CK, AG, GE are equal to the squares of AC, CB, and to twice the rectangle AC, CB : But $\mathrm{HF}, \mathrm{CK}, \mathrm{AG}, \mathrm{GE}$ make up the whole figure ADEB , which is the square of AB : Therefore the square of $A B$ is equal to the squares of $A C, C B$, and twice the rectangle $A C, C B$. Wherefore if a straight line, \&cc. Q. E. D.

Cor. From the demonstration, it is manifest, that the parallelograms about the diameter of a square are likewise squares.

PROP. V. THEOR.

IF a straight line be divided into two equal parts, and also into two unequal parts, the rectangle contained by the unequal parts, together with the square of the line between the points of section, is equal to the square of half the line.
Let the straight line ' $A B$ be divided into two equal parts in the point C , and into two unequal parts at the point D ; the reftangle AD, DB, together with the square of CD , is equal to the square of CB.

Upon CB describe ${ }^{\text {a }}$ the square CEFB , join BE , and through ${ }^{246.1 .}$ Ddraw ${ }^{b}$ DHG parallel to CE or BF ; and through H draw ${ }^{\text {º }}$ 31. 1 . KLM parallel to CB or EF ; and also through Adraw AK parallel to CL or BM : And because the complement CH is equal to the complement HF , to each of these add DM; there- - 43 . I. fore the whole CM is 'equal to the whole DF; but CM is equal ${ }^{d}$ to AL, because AC is equal to CB ; there- K fore also AL is equal to DF. To each of these add CH , and the whole AH is equal. to DF and CH : But AH

is the tectangle contained by AD, DB, for DH is equal to - Cor. 4. 2. DB; and DF together with CH is the gnomon CNIG; therefore the gnomon CMG is equal to the rectangle AD , DB: To each of these add LG , which is equale to the square of CD; therefore the ghomon CMG, together with LG, is equal to the rectangle $A D, D B$, together with the square of CD: But the gnomon CMG and LG make up the whole figure CEFB, which is the square of CB : Therefore the rectangle AD, DB, together with the square of CD , is equal to the square of CB. Wherefore if a straight line, \&tc. Q. E. D.

From this proposition it is manifest, that the difference of the squares of two unequal lines $A C, C D$, is equal to the rectangle contained by their sum and differense.

PRÓOP. VI. THEOR.

IF a straight line be bisected, and produced to any point; the rectangle contained by the whole line thus produced, and the part of it produced, together with the square of half the line bisected, is equal to the square of the straight line which is made up of the half and the part produced.

Let the straight line $A B$ be bisected in C, and produced to the point D ; the requangle AD, DB, together with the square of $C B$, is equal to the square of $C D$.
-46.1.

- $31 . \mathrm{t}$. , B draw ${ }^{\text {b }}$ BHG parallel to. CE or DF, and through H draw KLM parallel to AD or EF, and also through A draw AK parallel to CL or DM; and because $A C$ is equal to $C B$,
© 36.1 .
43.1. the rectangle AL is equal' to CH ; but CH is equald to K HF : therefore also AL is equal to HF: To each of these add CM; therefore the whole AM is equal to the gnomon CMG: And AM is the

e Cor. 4.2, rectangle contained by AD, DB, for DM is equalc to DB : Therefore the gnomon CMG is equal to the rectangle $A D$, DB : Add to each of these L.G, which is equal to the square of CB , therefore the refangle AD, DB, together with the square of $C B$, is equal to the gnomon C.MG, and the figure LG: But the giomon CMG and LG make up the whole figure CEFD, which is the square of $C D$; therefore the rectangle AD, DB, together with the square of CB , is equal to the square of CD. Wherefore, if a straight line, \&sc. Q. E. D.

PROP. VII. THEOR.

Ti a straight line be divided into any two parts, the squares of the whole line, and of one of the parts, are cqual to twice the rectangle contained by the whole and that part, together with the square of the other part.

Let the straight line $A B$ be divided into any two parts in
the point C; the squares of $A B, B C$ are equal to twice the Book II. rectangle $A B, B C$, together with the square of $A C$.

Upon $A B$ describe ${ }^{2}$ the square $A D E B$, and construct the 46 . i. figure as in the preceding propositions; and because $A G$ is equai ${ }^{\text {b }}$ to GE, add to each of them CK; the whole $A K$ is ${ }^{4} 43.1$. therefore, equal to the whole CE; therefore AK, CE, are double of $\mathrm{AK}:$ But AK, CE, are the gnomon $A K F$, together with the square CK ; therefore the gnomon AKF, together with the square CK, is double of $A K$: But twice the rectangle $A B$, $B C$ is double of $A K$, for $B K$ is equale to $B C$: Therefore the gnomon $A K F$, together with the square CK , is equal to twice the rectangle
 $A B, B C$: To each of these equals add HF , which is equal to the square of AC ; therefore the gnomon AKF , together with the squares CK, HF, is equal to twice the rectangle $A B, B C$, and the square of $A C$: but the gnomon AKF, together with the squares CK, HF, make up the whole figure $A D E B$ and $C K$, which are the squares of $A B$ and $B C$: therefore the squares of $A B$ and $B C$ are equal to twice the rectangle $A B, B C$, together with the square of $A C$. Wherefore, if a straight line, \&c. Q. E. D.

PROP. VIII. THEOR.

IF a straight line be divided into any two parts, four times the rectangle contained by the whole line, and one of the parts, together with the square of the other part, is equal to the square of the straight line, which is made up of the whole and that part.

Let the straight line $A B$ be divided into any two parts in the point C ; four times the rectangle AB, BC, together with the square of $A C$, is equal to the square of the straight line made up of $A B$ and $B C$ together.

Produce $A B$ to D, so that $B D$ be equal to $C B$, and upon $A D$ describe the square AEFD; and construct two figures such as in the preceding. Because CB is equal to BD , and that CB is equal ${ }^{2}$ to $G K$, and BD to KN ; therefore GK is ast. 1 . E

Boox II. equal to KN : For the same reason, PR is equal to RO ; and

- 36.1.
c 43. 1 . because CB is equal to BD , and $G K$ to KN , the rectangle CK is equal ${ }^{\text {b }}$ to $B N$, and GR to RN: but CK is equal to RN , because they are the complements of the parallelogram CO ; therefore also BN is equal to GR ; and the four rectangles $\mathrm{BN}, \mathrm{CK}, \mathrm{GR}, \mathrm{RN}$ are therefore equal to one another, and so are quadruple of on of them CK : Again, because CB is equal to $B D$, and that $B D$ is
Cor.4.2. equald to $B K$, that is; to CG, and CB equal to $G K$, that ${ }^{d}$ is, to GP; therefore CG is equal to GP: And because CG is equal to GP, and PR to RO, the rectangle $A G$ is equal to $M P$, and $P L$ to
e43.1. RF: But MP is equal e to PL, because they are the complements of the parallelogram ML ; wherefore $A G$ is equal also to $R F$: Therefore the four rectangles AG, MP, ${ }^{\circ} \mathrm{PL}, \mathrm{RF}$ are equal to one
 another, and so are quadruple of one of them AG. And it was demonstrated that the four CK $B N, G R$, and $R N$ are quadruple of CK. Therefore the eight rectangles which contain the gnomen AOH , are quadruple of $A K$; and because $A K$ is the rectangle contained by $A B, B C$, for $B K$ is equal to $B C$, four times the rectangle $A B, B C$ is quadruple of $A K$: But the gnomon $A O H$ was demonstrated to be quadruple of AK: therefore four times the rectangle AB, BC, is equal to the gnomon AOH . To
${ }^{1}$ Cor. 4. 2. each of these add XH , which is equalf to the square of AC : Therefore four times the rectangle AB, BC together with the square of $A C$, is equal to the gnomon AOH and the square XH : But the gnomon AOH anid XH make up the figure AEFD, which is the square of $A D$: Therefore four times the rectangle AB, BC, together with the square of AC , is equal to the square of $A D$, that is, of $A B$ and $B C$ added together in one straight line. Wherefore, if a straight line, \&cc. Q. E. D.

Boox II.

PROP. IX. THEOR.

IF a straight line be divided into tivo equal, and also into two unequal parts; the squares of the two unequal parts are together double of the square of half the line, and of the square of the line between the points of section.

Let the straight line $A B$ be divided at the point C into two equal, and at D into two unequal parts: The squares of $A D$, DB are together double of the squares of $A C, C D$.

From the point $C d^{2} w^{2} C E$ at right angles to $A B$, and 211.1. make it equal to $A C$ or $C B$, and join $E A, E B$; through D draw ${ }^{\text {b }} \mathrm{DF}$ parallel to CE , and through F draw $F G$ parallel to $A B ;{ }^{\circ}$ 31. 3. and join AF : Then, because AC is equal to CE , the angle EAC is equal ${ }^{5}$ to the angle AEC; and because the angle ${ }^{5} 5.1$. ACE is a right angle, the two others AEC, EAC together make one right angle ${ }^{d}$; and they are equal to one another; ${ }^{8} 52.1$. each of them therefore is half of a right angle. For the same reason each of the angles CEB, EBC is half a right angle; and therefore the whole AEB is a right angle: And because the angle GEF is half a right angle, and EGF a right angle, for it is
 equale to the interior and opposite angle ECB, the remaining e 2o.1. angle EFG is half a right angle ; therefore the angle GEF is equal to the angle EFG, and the side EG equalf to the 56.7 . side GF : Again, because the angle at B is half a right angle, and FDB a right angle, for it is equal e to the interior and opposite angle ECB, the remaining angle BFD is half a right angle; therefore the angle at B is equal to the angle BFD , and the side DF to ${ }^{\mathrm{F}}$ the side DB : And because $A C$ is equal to $C E$, the square of $A C$ is equal to the square of CE ; therefore the squares of AC, CE, are double of the square of AC : But the square of EA is equals to the squares 847.1 . of AC, CE, because ACE is a right angle; therefore the square of EA is double of the square of AC: Again, because $E G$ is equal to $G F$, the square of $E G$ is equal to the square of GF ; therefore the squares of EG, GF are double of

Booz If. the square of GF ; but the squatre of EF is equal to the squares
147.1. of EG, GF; therefore the square of EF is double of the square GF ; and GF is equal ${ }^{\text {b }}$ to $C D$; therefore the square of $E F$ is double of the square of $C D$: But the square of $A E$ is likewise double of the square of $A C$; therefore the squares of $A E, E F$ are double of the squares of $A C, C D$: And the square of $A F$ is equal to the squares of $A E, E F$, because $A E F$ is a right angle; therefore the square of $A F$ is double of the squares of $A C$, $C D$: But the squares of $A D, D F$, are equal to the square of AF , tecause the angle ADF is a right angle ; therefore the squares of $A D, D F$ are double of the squares of $A C, C D$: And $D F$ is equal to $D B$; therefore the squares of $A D, D B$ are double of the squares of AC, CD. If therefore a straight line, \&c. Q. E. D.

PROP. X. THEOR.
IF a straight line be bisected, and produced to any point, the square of the whole line thus produced, and the square of the part of it produced, are together double of the square of half the line bisected, and of the square of the line made up of the half and the part produced.

Let the straight line $A B$ be bisected in C and produced to the point D; the squares of $A D, D B$ are double of the squares of $A C, C D$.

From the point C draw ${ }^{*} \mathrm{CE}$ at right angles to A, B : And make it equal to $A C$ or $C B$, and join $A E, E B$; through E draw ${ }^{5} E F$ parallel to $A B$, and through D draw DF parallel to CE: And because the straight line EF meets the parallelsEC,FD, the angles $\mathrm{CEF}, \mathrm{EFD}$ are equalc to two right angles; and therefore theangles BEF, EFD areless thantwo right angles; butstraight lines which with another straight line make the interior angles upon the same side less than two right angles, do meet ${ }^{d}$ if produced far enough: Therefore EB, FD shall meet, if produced
©.5. 1.

〔33, 2. towards B, D: Let them meet in G, and join AG: Then, because $A C$ is equal to $C E$, the angle $C E A$ is equale to the angle EAC; and the angle ACE is a right angle ; therefore each of the angles CEA, EAC is half a right anglef. For the same
reason, each of the angles $\mathrm{CEB}, \mathrm{EBC}$ is half a right angle; Boox II. therefore AEB is a right angle: And because EBC is half a right angle, $D B G$ is alsof half a right angle, for they are ver- ${ }^{\text {f }} 15.1$. tically quposite ; but BDG is a right angle, because it is equale © 29.1 . to the alternate angle DCE ; therefore the remaining angle DGB is half a right angle, and is therefore equal to the angle DBG; wherefore also the side $B D$ is equals to the side $D G .{ }^{8} 6.1$. Again, because EGF is hali a right angle, and that the angle at F is a right ang^{\prime} e, because it is equal ${ }^{\text {b }}$ to the oppusite angle ECD, the ve:naining angle FEG is half a right angle, and equal to the angle EGF; vierefore also the side

- 34. 35. Cir is equals to the side
FE. And because EC is equal to CA, the square of EC is equal to the square of $C A$; therefore the squares of $E C, C A$ are double of the square of $C A$: But the square of $E A$ is equal' to the squares of $E C, C A$; therefore the square of $E A^{2}$ 57. 1 . is double of the square of AC : Again, because GF is equal to FE , the square of GF is equal to the square of FE ; and therefore the squares of GF, FE are double of the square of EF ; But the square of $E G$ is equal ${ }^{i}$ to the squares of $G F, F E$; therefore the square of $E G$ is double of the square of $E F$: And EF is equal to CD ; wherefore the square of EG is double of the square of CD . But it was demonstrated, that the square of $E A$ is double of the square of $A C$; therefore the squares of $A E, E G$, are double of the squares of $A C, C D$: And the square of $A G$ is equal to the squares of $A E, E G$; therefore the square of $A G$ is double of the squares of $A C$, $C D$: But the squares of $A D, G D$, are equali to the square of AG ; therefore the squares of AD, DG are double of the squares of $A C, C D$: But $D G$ is equal to $D B$; therefore the squares of $A D, D B$ are double of the squares of $A C_{2} C D$. Wherefore, if a straight line, \&ic. Q.E.D.

Book IH.
PROP. XI. PROB,

ToO divide a given straight line into two parts, so that the rectangle contained by the whole, and one of the parts, shall be equal to the square of the other part.

Let $A B$ be the given straight line ; it is required to divide it into two parts, so that the refangle contained by the whole, and one of the parts, shall be equal to the square of the other part.

Upon $A B$ describe ${ }^{2}$ the square $A B D C$; bisect $A C$ in E, and join $B E$; produce $C A$ to F, and make ${ }^{\text {c }} E F$ equal to $E B$, and upon AF describe ${ }^{2}$ the square of $F G H A$; $A B$ is divided in H , so that the rectangle AB, BH, is equal to the square of AH . - Produce GH to K ; because the straight line AC is bisected in E , and produced to the point F , the rectangle, CF, FA, together with the square of $A E$, is equal ${ }^{d}$ to the square of $E F$: But EF is equal to EB ; therefore the rectangle CF, FA, together with the square of $A E$, is equal to the square of $E B$: and the squares of BA, AE, are equalc to the square of EB, because the angle $E A B$ is a right angle ; therefore the rectangle CF, FA, together with the square of $A E$, is equal to the squares of BA, AE: Take away the square of AE , which is common to both, therefore the remaining rectangle CF, FA, is equal to the square of AB ; and the figure $F K$ is the rectangle contained by CF, FA, for $A F$ is equal to $F G$; and $A D$ is the square of $A B$; therefore $F \mathrm{FK}$ is equal to AD : Take away the common part AK, and the remain-
 der FH is equal to the remainder HD : And HD is the rectangle contained by AB, BH, for AB is equal to BD ; and FH is the square of AH . Therefore the rectangle AB, BH is equal to the square of AH : Wherefore, the straight line $A B$ is divided in H, so that the rectangle $A B$, BH , is equal to the square of AH . Which was to be done.

PROP. XII. - THEOR.

IN obtuse angled triangles, if a perpendicular be drawn from any of the acute angles to the opposite side produced, the square of the side subtending the obtuse angle is greater than the squares of the sides containing the obtuse angle, by twice the rectangle contained by the side upon which, when produced, the perpendicular falls, and the straight line intercepted without the triangle between the perpendicular and the obtuse angle.

Let $A B C$ be an obtuse angled triangle, having the obtuse angle $A C B$, and from the point A let $A D$ be drawn ${ }^{2}$ perpen- ${ }^{18.2}$ dicular to $B C$ produced: The square of $A B$ is greater than the squares of $A C, C B$, by twice the rectangle $B C, C D$.

Because the straight line BD is divided into two parts in the point C, the square of $B D$ is equal ${ }^{5}$ to the squares of BC, CD, and twice the rectangle BC, CD : To each of these equals add the square of $D A$; and the squares of $B D, D A$, are equal to the squares of $B C, C D$, DA , and t wise the rectangle BC , $C D$: But the square of $B A$ is equal 'to the squares of BD, DA, because the angle at D is a right angle ; and the square of CA is
 equal to the squares of $C D, D A$: Therefore the square of $B A$ is equal to the squares of $B C, C A$, and twice the rectangle $B C, C D$; that is, the square of $B A$ is greater than the squares of $B C, C A$, by twice the rectangle $B C, C D$. Therefore, in obtuse angled triangles, \&ic. Q. E. D.

$$
E_{4}
$$

Boox II.

THEELEMENTS

PROP. XIII. THEOR.

see N .

IN every triangle, the square of the side subtending any of the acute angles, is less than the squares of the sides containing that angle, by tivice the rectangle contained by either of these sides, and the straight lipe intercepted between the perpendicular let fall upon from the opposite angle, and the acute angle.
Let $A B C$ be any triangle, and the angle at B one of its acute angles, and upon $B C$, one of the sides containing it, let
a 12. 1. fall the perpendicular ${ }^{2} \mathrm{AD}$ from the opposite angle: The square of AC , opposite to the angle B , is less than the squares of $C B, B A$, by twice the rectangle $C B, B D$.

First, Let AD fail within the riangle ABC ; and because the straight line CB is divided into two parts in the point D, the -7. 2. squares of CB, BD are equal ${ }^{\text {b }}$ to twice the rectangle contained by $C B, B D$, and the square of $D C$: To each of these equals add the square of AD ; therefore the squares of $\mathrm{CB}, \mathrm{BD}, \mathrm{DA}$, are equal to twice the rectangle CB, BD; and the squares of AD, DC : But the

647.1. squares of $A B$ is equale to the square $B D, D A$, because the angle $B D A$ is a right angle ; and the square of $A C$ is equal to the squares of $A D, D C$: Therefore the squares of CB, BA are equal to the square of AC , and twice the rectangle CB, BD, that is, the square of AC alone is less than the squares of CB, BA by twice the rectangle CB, BD.

Secondly, Let AD fall without the triangle ABC : Then, because the angle at D is a right angle, -16. 1. the angle ACB is greater ${ }^{\text {d }}$ than a right angle; and therefore the
${ }^{\mathrm{e}}$ 12. 2. square of AB is equal ${ }^{c}$ to the squares of $A C, C B$, and twice the rectangle BC, CD : To these equals add the square of $B C$, and the

squares of $A B, B C$ are equal to the square of $A C$, and twice Boos II. the square of BC , and twice the rectangle BC, CD : But because BD is divided into two parts in C , the rectangle DB , $B C$ is equalf to the restangle. $B C, C D$ and the square of $B C:{ }^{r}$. os And the doubles of these are equal: Therefore the squares of AB, BC are equal to the square of AC , and twice the rectangle DB, BC : Therefore the square of AC alone is less than the squares of AB, BC by twice the rectangle DB, BC.

Lastly, let the side AC be perpendicular to $B C$; then is $B C$ the straight line between the perpendicular and the acute angle at B; and it is manifest, that the squares of AB, BC, are equals to the square of AC and twice the square of $B C$: Therefore, in every triangle, \&c. Q. E. D.

PROP. XIV. PROB.

TO describe a square that shall be equal to a given see N . rectilineal figure.
Let A be the given rectilineal figure; it is required to describe a square that shall be equal to A.
Describe ${ }^{\text {² }}$ the reCtangular parallelogram BCDE equal to the ${ }^{\mathbf{4}} \mathbf{4 5 . 1}$. rectilineal figure A . If then the sides of it BE, ED are equal to one another, it is a square, and what was required is now done: But if they are not equal, produce one of them BE to F , and make EF equal to ED and bisect BF in G : and from the centre G, at the distance $G B$, or GF, describe the semicircle BHF, and produce DE to H , and join GH : Therefore because the straight line BF isdivided into two equal parts in the point G, and into two unequal at E, the rectangle $B E$, $E F$, together with the square of $E G$, is equal ${ }^{b}$ to the square of ${ }^{\circ} 5.2$. GF : But GE is equal to GH : therefore the rectangle BE, EF,

Boos II. together with the square of EG , is equal to the square of GH :
(7.1. But the squares of HE, EG are equalc to the square of GH :
$\%$; Therefore the rectangle BE, EF, together with the square of EG, is equal to the squares of HE, EG: Take away the square of EG, which is common to both; and the remaining rectangle BE, EF is equal to the square of EH : But the rectangle contained by BE, EF is the parallelogram BD , because EF is equal to ED ; therefore BD is equal to the square of EH ; but BD is equal to the rectilineal figure A ; therefore the rectilineal figure A is equal to the square of EH. Wherefore a square has been made equal to the given rectilineal figure A, viz. the square described upon EH. Which was to be done.

$$
\text { Fociayout } 2 \text { If }
$$

THE

ELEMENTS

OF

EUCLID.

BOOK. III.

DEFINITIONS.

I.

CQUAL circles are those of which the diameters are equal, or from the centres of which the straight lines to the circumferences are equal.

- This is not a definition, but a theorem, the truth of which ' is evident; for, if the circles be applied to one another, so ' that their centres coincide, the circles must likewise coin' cide, since the straight lines from the centres are equal.'
II.

A straight line is said to touch a circle, when it meets the circle, and being produced does not cut it.
III.

Circles are said to touch one another, which meet but do not cut one another.
IV.

Straight lines are said to be equally distant from the centre of a circle, when the perpendiculars drawn to them from the centre are equal.
V.

And the straight line on which the greater perpendicular falls, is said to be farther from the centre.

VI.

A segment of a circle is the figure contained by a straight line and the circumference it cuts off.
VII.
"The angle of a segment is that which is contained by the " straight line and the circumference."
VIII.

An angle in a segment is the angle contained by two straight lines drawn from any point in the circumference of the segment, to the extremities of the straight line which is the base of the segment.

IX.

And an angle is said to insist;or stand
 upon the circumference intercepted between the straight lines that contain the angle.

X.

The sector of a circle is the figure con, tained by two straight lines drawn from the centre, and the circumference between them.

> XI.

Similar segments of a circle are those in which the angles are equal, or which contain equal angles.

PROP. I. PROB.

See N. TO find the centre of a given circle.
Let $A B C$ be the given circle; it is. required to find it: centre.
210.1.

Draw within it any straight line $A B$, and bisect it in. D from the point D draw ${ }^{\circ} D C$ at right angles to $A B$, and pro.

- 11. 12. duce it to E, and bisect $C E$ in F : The point F is the centre of the circle $A B C$.

For, if it be not, let, if possible, G be the centre, and join Boox III. GA, GD, GB: Then, because DA is equal to $D B$, and $D G$ common to the two triangles $A D G$, BDG , the two sides AD, DG are equal to the two $B D, D G$, each to each; and the base GA is equal to the base GB, because they are drawn from the centre G*: Therefore the angle ADG is equal c to the angle GDB : But when a straight line standing upon another straight line makes the adjacent angles equal to one another, each of the angles is a right angled : Therefore the
 angle GDB is a right angle: But FDB is likewise a right angle: wherefore the angle FDB is equal to the angle GDB, the greater to the less, which is impossible : Therefore G is not the centre of the circle $A B C$. In the same manner it can be shewn, shat no other point but F is the centre: that is, F is the centre of the circle $A B C$: Which was to be found.

Cor. From this it is manifest, that if in a circle a straight line bisect another at right angles, the centre of the circle is in the line which bisects the other.

PROP. II. THEOR.

IF any two points be taken in the circumference of a circle, the straight line which joins them shall fall within the circle:
Let $A B C$ be a circle, and A, B any two points in the sircumference ; the straight line drawn from A to B shall fall within the circle.
For, if it do not, let it fall, if possible, without ${ }_{2}$ as AEB ; find ${ }^{2} \mathrm{D}$ the centre of the circle ABC ; and join AD, DB, and produce DF , any straight-line meeting the circumference $A B$ to E : Then because DA is equal to DB , the angle $D A B$ is equal ${ }^{\text {b }}$ to the angle $D B A$; and because AE, a side of the triangle

[^1]DAE,

Boos III. DAE, is produced to B, the angle DEB is greater ${ }^{c}$ than the
e 16.1.
-19. 1. angle DAE; but DAE is equal to the angle DBE ; therefore the angle DEB is greater than the angle DBE: But to the greater angle the greater side is opposited; DB is therefore greater than DE: But DB is equal to DF; wherefore DF is greater than DE, the less than the greater, which is impossible : Therefore the straight line drawn from A to B does not fall without the circle. In the same manner, it may be demonstrated that it does not fall upon the circumference; it falls therefore within it. Wherefore, if any two points, \&zc. Q.E.D.

PROP. III. THEOR.

IfF a straight line drawn through the centre of a circle bisect a straight line in it which does not pass through the centre, it shall cut it at right angles; and if it cuts it at right angles, it shall bisect it.

Let $A^{\prime} B C$ be a circle; and let $C D$, a straight line drawn through the centre, bisect any straight line AB , which does not pass through the centre, in the point F : It cuts it also at right angles.
21.3. Take ${ }^{2}$ the centre of the circle, and join EA, EB. Then, because AF is equal to $F B$, and FE common to the two triangles AFE, BFE, there are two sides in the one equal to two sides in the other, and the base EA is equal to the base EB; therefore the

- 3. 4. angle AFE is equal ${ }^{\text {b }}$ to the angle BFE: But when a straight line standing upon another makes the adjacent angles equal to one another, each of them is a right
- 10 Def. 1. cangle: Therefore each of the angles $\mathrm{AFE}, \mathrm{BFE}$ is a right angle; wherefore
. C the straight line CD , drawn through the centre bisecting another $A B$ that does not pass through the centre, cuts
 the same at right angles.

But let $C D$ cut $A B$ at right angles; $C D$ also bisects it, that is, AF is equal to FB .

The same construction being made, because EA, EB from
-5.1. the centre are equal to one another, the angle EAF is equal ${ }^{3}$ to the angle EBF: and the right angle AFE is equal to the right angle BFE : Therefore, in the two triangles, EAF,

EBF, there are two angles in one equal to two angles in the Boor 111 . other, and the side EF, which is opposite to one of the equal angles in each, is common to both ; therefore the other sides • 26. 1. are equale; AF therefore is equal to FB . Wherefore, if a straight line, \&cc. Q. E. D.

PPOP. IV. THEOR.

IF in a circle two straight lines cut one another which do not both pass through the centre, they do not bisect each other.

Let $A B C D$ be a circle, and $A C, B D$ two straight lines in it which cut one another in the point E , and do not both pass through the centre: AC, BD do not bisect one another.

For, if it is possible, let AE be equal to EC , and BE to ED : If one of the lines pass through the centre, it is plain that it cannot be bisected by the other which does not pass through the centre: But if neither of them pass through the centre, take ${ }^{2} \mathrm{~F}$ the centre of the circle, and join EF : and because FE, a straight line through the centre, bisects another AC which does not pass through the centre, it shall cut it at right ${ }^{b}$ angles; wherefore FEA is a
 right angle: Again, because the straight line FE bisects the straight line BD which does not pass through the centre, it shall cut it at rightb angles; wherefore FEB is a right angle : And FEA was shewn to be a right angle ; therefore FEA is equal to the angle FEB, the less to the greater, which is impossible: Therefore AC, BD do not bisect one another. Wherefore, if in a circle, \&\&c. Q. E. D. -

PROP. V. THEOR.

IF tivo circles cut one another, they shall not have the same centre.

Let the two circles $A B C, C D G$ cut one another in the points B, C; they have not the same centre.

THE ELEMENTS

Boox III. For, if it be possible, let E be their centre; join EC, and draw any straight line EFG meeting them in F and G ; and because E is the centre of the circle ABC , CE is equal to EF : Again, because E is the centre of the circle CDG, CE is equal to EG : But CE was shewn to be equal to EF; therefore EY is equal to EG, the less to the greater, which is impossible: Therefore E is not the
 centre of the circles $A B C, C D G$. Wherefore, if two circles, \&c. Q. E. D.

PROP. VI. THEOR.

I
F two circles touch one another internally, they shall not have the same centre.

Let the two circles $\mathrm{ABC}, \mathrm{CDE}$, touch one another internally in the point C : They have not the same centre.

For, if they can, let it be F; join $F C$ and draw any straight line FEB meeting them in E and B; And because F is the centre of the circle $\mathrm{ABC}, \mathrm{CF}$ is equal to FB ; Also, because F is the centre of the circle $\mathrm{CDE}, \mathrm{CF}$ is equal to FE : And CF was shewn equal to FB ; therefore $F E$ is equal to $F B$, the less to the greater, which is impossible: Wherefore F is not the centre of
 the circles $A B C, C D E$. Therefore, if two circles, \&c. Q. E. D.

IF any point be taken in the diameter of a circle which is not the centre, of all the straight lines which can be drawn froin it to the circumference, the greatest is that in which the centre is, and the other part of that diameter is the least; and, of any others, that which is nearer to the line which passes through the centre is always greater than one more remote: And from the same point there can be drawn only two straight lines that are equal to one another, one upon each side of the shortest line.

Let $A B C D$ be a circle, and $A D$ its diameter, in which let any point F be taken which is not the centre : Let the centre be E; of all the straight lines FB, FC, FG, \&c. that can be drawn from F to the circumference, $F A$ is the greatest, and FD, the other part of the diameter $B D$, is the least: And of the others, FB is greater than FC, and FC than FG .

Join BE, CE, GE ; and because two sides of a triangle are greater ${ }^{3}$ than the third, BE, EF are greater than BF ; but $\mathrm{AE}^{2} 20.1$. is equal to $E B$; therefore AE, EF, that is AF , is greater than $\mathrm{BF}: \mathrm{A}$ gain, because BE is equal to CE , and FE common to the triangles $\mathrm{BEF}, \mathrm{CEF}$, the twosides BE, EF are equal to the two CE, EF; but the angle BEF is greater than the angle CEF; therefore the base BF is greater than the base FC: For the same reason, CF is greater than GF: Again, because GF, FE are
 greater ${ }^{2}$ than $E G$, and $E G$ is equal to ED ; GF, FE are greater than ED: Take away the common part FE, and the remainder GF is greater than the remainder FD: Therefore FA is the greatest, and FD the least of all the straight lines from F to the circumference ; and $B F$ is greater than CF, and CF than GF.

Also there can be drawn only two equal straight lines from the point F to the circumference, one upon each side of the

Boor III. shortest line FD: At the point E in the straight line EF , make ${ }^{c}$ the angle FEH equal to the angle GEF, and join FH: Then because GE is equal to EH, and EF comnion to the two triangles GEF, HEF ; the two sides GE, EF are equal to the two HE, EF ; and the angle GEF is equal to the an-
d4. 1. gle HEF; therefore the base FG is equald to the base FH: But, besides FH , no other straight line can be drawn from F to the circumference equal to FG: For, if there can, let it be FK ; and because FK is equal to FG , and FG to FH, FK is equal to FH; that is, a line nearerto that which passes through the centre, is equal to one which is more remote; which is impossible. Therefore, if any point be taken, \&cc. Q. E. D.

PR OP. VIII. THEOR.

IF any pointbe taken without a circle, and straight lines be drawn from it to the circumference, whereof one passes through the centre; of those which fall upon the concave circumference, the greatest is that which passes through the centre; and of the rest, that, which is nearer to that through the centre is always greater than the more remote: But of those which fall upon the convex circumference, the least is that between the point without the circle and the diameter; and of the rest, that which is nearer to the least is always less than the more remote: And only two equal straight lines can be drawn from the point into the circumference, one upon each side of the least.

Let $A B C$ be a circle, and D any point withoutit, from which let the straight lines $\mathrm{DA}, \mathrm{DE}, \mathrm{DF}, \mathrm{DC}$ be drawn to the circumference, whereof DA passes through the centre. Of those which fall upon the concave part of the circumference AEFC, the greatest is AD which passes through the centre ; and the nearer to it is always greater than the more remote, viz. DE than DF, and DF than DC: But of those which fall upon the convex circumference $H L K G$, the least is $D G$ between the

OF
 EUCLID.

point D and the diameter AG ; and the nearer to it is always less than the more remote, viz. DK than DL , and DL than DH.

Take ${ }^{2} \mathrm{M}$ the centre of the circle ABC , and join $\mathrm{ME}, \mathrm{MF},{ }^{2}$ 1.3. , MC, MK, ML, MH : And because AM is equal to ME, add MD to each, therefore $A D$ is equal to EM, MD; but EM, MD are greater ${ }^{\text {b }}$ than ED ; therefore also AD is greater than $E D \cdot 20.1$. Again, because ME is equal to MF, and MD common to the triangles EMD, FMD; EM, MD are equal to $F M, \mathrm{MD}$: but the angle EMD is greater than the angle FMD; therefore the base ED is greater ${ }^{\text {c }}$ than the base FD: In like manner it inay be shewn that $F D$ is greater than $C D$: Therefore DA is the greatest ; and $D E$ greater than DF , and DF than DC : And because MK, KD are greater ${ }^{b}$ than $M D$, and $M K$ is equal to MG , the remainder KD is greater d than the remainder GD , that is GD is less than KD : And because MK, DK are drawn to the point K within the triangle MLD from M, D, the extremities of its side $\mathrm{MD}, \mathrm{MK}, \mathrm{KD}$ are less e than ML, LD, whereof MK
 is equal to $M L$; therefore the remainder $D K$ is less than the remainder DL : In like manner it may be shewn, that DL is less than DH: Therefore DG is the least, and DK less than DL, and, DL than DH : Also there can be drawn only two equal straight lines from the point D to the circumference, one upon each side of the least : At the point M, in the straight line MD , make the angle DMB equal to the angle $\mathrm{D} M \mathrm{M}$, and join DB: And because MK is equal to MB, and MD common to the triangles $\mathrm{KMD}, \mathrm{BMD}$; the two sides KM , MD are equal to the two BM, MD; and the angle KMD is equal to the angle BMD ; therefore the base DK is equal ${ }^{\boldsymbol{p}}{ }^{\text {4. }}$. to the base DB : But, besides DB , there can be no straight line drawn from D to the circumference equal to DK : For, if there can, let it be DN ; and because DK is equal to DN , and also to DB ; therefore DB is equal to DN , that is, the nearer to the least equal to the more remote, which is impossible. If therefore, any point, \&c. Q. E. D.

PROP. IX. THEOR.

IF a point be taken within a circle, from which there fall more than two equal straight lines to the circumference, that point is the centre of the circle.

Let the point D be taken within the circle $A B C$, from which to the circumference there fall more than two equal straight lines, viz. DA, DB, DC, the point D is the centre of the circle.

For, if not, let E be the centre, join DE and produce it to the circumference in F, G : then $F G$ is a diameter of the circle ABC : And because in $F G$, the diameter of the circle ABC , there is taken the point D, which is not the centre, DG shall be the greatest line from it to the circumference, and DC greater a than DB, and DB than DA:
 But they are likewise equal, which is impossible; Therefore E is not the centre of the circle ABC: Inlike manner, it may be demonstrated, that no other point but D is the centre; D therefore is the centre. Wherefore, if a point be taken, \&c. Q. E. D.

PROP. X. THEOR.
ONE circumference of a circle cannot cut another in more than two points.

If it be possible, let the circumference FAB cut the circumference ijeF in more than two points, viz. in B, G, F; take the centre K of the circle $A B C$, and join $K B, K G, K F$: Aud because within the circle DEF there is taken the point K, from which to the circumference DEF fall more than two equal straight

[^2]

OFEUCLID.
the centre of the circle DEF : But K is also the centre of the Book 11 F . circle $A B C$; therefore the same point is the centre of two circles that cut one another, which is impossible ${ }^{\text {b }}$. Therefore ${ }^{\text {b }}$ 5.3. one circumference of a circle cannot cut another in more than two points. C E. D.

PROP. XI. THEOR.

IF two circles touch each other internally, the straight line which joins their centres being produced shall pass through the point of contact.

Let the two circles $A B C, A D E$ touch each other internally in the point A , and let F be the centre of the circle ABC , and G the centre of the circle ADE : The straight line which joins the centres F, G, being produced; passes through the point A.

For, if not, let it fall otherwise, if possible, as FGDH, and join AF, AG: And because AG, GF are greater ${ }^{2}$ than FA, that is, than FH , for FA is equal to FH , both being from the same centre; take away the common part FG ; therefore the remain-
 $\operatorname{der} A G$ is greater than the remainder $G H$: But $A G$ is equal to GD ; therefore GD is greater than GH, the less than the greater, which is impossible. Therefore the straight line which joins the points F, G cannot fall otherwise than upon the point A, that is, it must pass through it. Therefore, if two circles, \&cc. Q. E. D.

PPOP. XII. THEOR.

IF two circles touch each other externally, the straight line which joins their centres shall pass through the point of contact.

Let the two circles $\mathrm{ABC}, \mathrm{ADE}$, touch each other externally in the point A; and let F be the centre of the circle $A B C$, and G the centre of $A D E$: The straight line which joins the points F, Gshall pass through the point of contact A.

For, if not, let it pass otherwise, if possible, as FCDG, and

Booz III. join FA, AG: And because F is the centre of the circle $A B C$, $A F$ is equal to $F C$: Also because G is the centre of the circle $A D E, A G$ is equal to GD: Therefore FA, AG are equal to FC, DG; wherefore the whole FG is greater than FA, AG: But it is also

20. 1. less 2; which is impossible: Therefore the straight line which joins the points F, G shall not pass otherwise than through the point of contact A, that is, it must pass through it. Therefore, if two circles, \&c. Q. E. D.

PROP. XIII. THEOR.
See N. ONE circle cannot touch another in more points than one, whether it touches it on the inside or outside.

For, if it be possible, let the circle EBF touch the circle $A B C$ in more points than one, and first on the inside, in the
-10.11. 1. points B, D; join $B D$, and draw ${ }^{1}$ GH bisecting $B D$ at right angles : Therefore because the points B, D are in the circum-

-1.3.
${ }^{6}$ Cor. 1.3.
${ }^{d} 11.3$.
ference of each of the circles, the straight line BD falls within each ${ }^{\text {b }}$ of them: And their centres are ${ }^{c}$ in the straight line GH which bisects $B D$ at right angles: Therefore GH passes through the point of contact ${ }^{d}$; but it does not pass through it, because the points B, D are without the straight line GH , which is absurd: Therefore one circle cannot touch another on the inside in more points than one.

Nor can two circles ${ }^{2}$ touch one another on the outside in

OF EUCLID.

more than one point; For, if it be possible, let the circle ACK Poox ilf. touch the circle $A B C$ in the points A, C, and join $A C$: Therefore, because the two points A, C are in the circumference of the circle ACK , the straight line $A C$ which joins them shall fal! within ${ }^{\text {b }}$ the circle ACK: And the circle ACK is without the circle $A B C$; and therefore the straight line AC is without this last circle ; but because the points A, C are in the circumference of the circle $A B C$, the straight line $A C$ must be within ${ }^{\text {b }}$ the same circle, which is absurd: Therefore one circle cannot touch another on the outside in more than one point: And it
 has been shewn, that they cannot touch on the inside in more points than one. Therefore, one circle, \&c. Q. E. D.

PROP. XIV: THEOR.

EQUAL straight lines in a circle are equally distant from the centre; and those which are equally distant from the centre, are equal to one another.

Let the straight lines $A B, C D$, in the circle $A B D C$, be equal to one another; they are equally distant from the centre.

Take E the centre of the circle ABDC, and from it draw EF, EG perpendiculars to $A B, C D$: Then, because the straight line $E F$, passing through the centre, cuts the straight line $A B$, which does not pass through the centre, at right angles, it also bisects ${ }^{2}$ it: Wherefore $A F$ is equal to $F B$, and $A B$ double of AF . For the same reason CD is double of CG: And $A B$ is equal to $C D$; therefore $A F$ is equal to $C G$: And because AE is equal to EC , the square of $A E$ is equal to the square of EC: But the squares of AF, FE are equal ${ }^{b}$ to the square of $A E$, because the angle AFE is a right angle; and
 for the like reason, the squares of EG, GC are equal to the square of EC : Therefore the squares of AF, FE are equal to the squares of CG, GE, of which the square of AF is equal to

THEELEMENTS

$\underbrace{\text { Boox III. }}$, the square of $C G$; because $A F$ is equal to $C G$; therefore the remaining square of FE is equal to the remaining square of EG, and the straight line EF is therefore equal to EG: But straight lines in a circle are said to be equally distant from the centre, when the perpendiculars drawn to them from the cen-
-4.def. 3. tre are equal': Therefore $A B, C D$ be equally distant from the centre.
Next, if the straight lines AB, CD be equally distant from the centre, that is if FE be equal to EG ; AB is equal to CD : For, the same construction being made, it may, as before, be demonstrated, that AB is double of AF , and CD double of CG, and that the squares of $E F, F A$ are equal to the squares of $E G, G C$; of which the square of $F E$ is equal to the square of EG , because FE is equal to EG ; therefore the remaining square of $A F$ is equal to the remaining square of $C G$; and the straight line AF is therefore equal to CG : And AB is double of $A F$, and $C D$ double of $C G$; wherefore $A B$ is equal to CD. Therefore equal straight lines, \&ic. Q. E. D.

PROP. XV. THEOR.

See N. THE diameter is the greatest straight line in a circle; and, of all others, that which is nearer to the centre is always greater than one more remote: and the greater is nearer to the centre than the less.

Let $A B C D$ be a circle, of which the diameter is AD , and the centre E ; and let BC be nearer to the centre than FG ; AD is greater than any straight line $B C$ which is not a diameter, and BC greater than FG.

From the centre draw EH, EK nerpendiculars to BC, FG, and join EB , EC, EF; and because AE is equal to
210.1 $E B$, and $E D$ to $E C, A D$ is equal to $E B, E C$; but $E B, E C$ are greater a
 than BC : wherefore, also AD is greater than BC.

And, because BC is nearer to the centre than FG, EH is
less ${ }^{\text {b }}$ than EK : But, as was demonstrated in the preceding, ${ }^{\text {Boor } 111 .}$ BC is double of BH , and FG double of FK , and the squares of ${ }_{5} 5_{5}$. def. 3. EH, HB are equal to the squares of EK, KF, of which the square of EH is less than the square of EK , because EH is less than EK; therefore the square of BH is greater than the square of FK , and the straight line BH greater than FK . and therefore BC is greater than FG .

Next, Let BC be greater than FG; BC is nearer to the centre than FG, that is, the same construction being made, EH is less than EK: Because BC is greater than FG, BH likewise is greater than KF : And the squares of BH, HE are equal to the squares of $F \mathrm{~K}, \mathrm{KE}$, of which the square of BH is greater than the square of FK , because BH is greater than FK ; therefore the square of EH is less than thesquare of EK, and the straight line EH less than EK. Wherefore the diameter, \&ic. Q. E. D.

PROP. XVI. THEOR.

THE straight line drawn at right angles to the dia- see N . meter of a circle, from the extremity of it, falls without the circle; and no straight line can be drawn between that straight line and the circumference from the extremity, so as not to cut the circle ; or, which is the same thing, no straight line can make so great an acute angle with the diameter at its extremity, or so small an angle with the straight line, which is at right, angles to it, as not to cut the circle.

Let $A B C$ be a circle; the centre of which is D, and the diameter AB : the straight line drawn at right angles to AB from its extremity A , shall fall without the circle.

For, if it does not, let it fall, if possible, within the circle, as AC, and draw DC to the point C where it meets the circumference: And because DA is equal to DC , the angle DAC is equala to the angle ACD ; but DAC is a right angle, therefore ACD is a right angle, and the angles $D A C, A C D$ are therefore equal to two right angles; which is impossible ${ }^{b}$: ${ }^{n} 1 \% .1$.

THE ELEMENTS

Book IU. Therefore the straight line drawn from A at right angles to. BA does not fall within the circle: In the same manner, it may be demonstrated, that it does not fall upon the circumference; therefore it must fall without the circle, as AE.

And between the straight line AE and the circumference no straight line can be drawn from the point A which does not cut the circle: For, if possible, let FA be between them, and
610.1. from the point D draw ${ }^{c}$ DG perpendicular to $F A$, and let it meet the circumference in H : And because AGD is a right
d19. 1. . angle, -and DAG less ${ }^{\text {b }}$ than a right angle, DA is greater ${ }^{\text {d }}$ than DG: But DA is equal to DH : therefore DH is greater than $D G$, the less than the greater, which is inpossible: Therefore no straight line can be drawn from the point A between $A E$ and the circumference, which does not cut the circle, or, which amounts to the same thing, however great an acute angle a straight line makes with the diameter at the point A, or however small an angle it makes with AE,
 the circumference passes between that straight line and the perpendicular AE. ' And this is all that is to be understood, ${ }^{6}$ when, in the Greek text, and translations from it; the angle ' of the semicircle is said to be greater than any acute rectili-- neal angle, and the remaining angle less than any rectilineal ' angle.' Q. E. D.

Cor. From this it is manifest, that the straight line which is drawn at right anglesto the diameter of a circle from the extremity of it, touches the circle; and that it touches it only in one point, because, if it did meet the circle in two, it would fall within it . 'Also it is evident that there can be but one 'straight line which touches the circle in the same point.?

PROP. XVII. PROB.
TO draw a straight line from a given point, either without or in the circumference, which shall touch a given circle.

First, let A be a given point without the given circle BCD ;
it is required to draw a straight line from A which shall touch $\underbrace{\text { Boor III, }}$ the circle.

Find ${ }^{2}$ the centre E of the circle, and join AE; and from ${ }^{2} 1.3$. the centre E , at the distance EA, describe the circle AFG; from the point D draw ${ }^{\mathrm{b}} \mathrm{DF}$ at right angles to EA , and join ${ }^{\text {b }}$ 11.1. $\mathrm{EBF}, \mathrm{AB}$. AB touches the circle BCD .

Because E, is the centre of the circles $\mathrm{BCD}, \mathrm{AFG}$, $E A$ is equal to EF : And ED to EB; therefore the two sides AE, EB are equal to the two $F E, E D$, and they contain the angle at E common to the two triangles $\mathrm{AEB}, \mathrm{FED}$; therefore the base DF is equal to the base AB ; and the
 triangle FED to the triangle AEB, and the other angles to the other angles ${ }^{c}$: There- ©4.1. fore the angle EBA is equal to the angle EDF: But EDF is a rightangle, wherefore EBA isaright angle: And EB is drawn from the centre : But a straight line drawn from the extremi${ }^{\text {ty }}$ of a diameter, at right angles to it, touches the circle ${ }^{d}$: ${ }^{\circ}$ Cor. 16.9 Therefore AB touches the circle; and it is drawn from the given point A. Which was to be done.

But if the given point be in the circumference of the circle, as the point D , draw DE to the centre E , and DF at right angles to DE ; DF -touches the circled.

PROP. XVIII. THEOR.

IF a straight line touches a circle, the straight line drawn from the centre to the point of contact, shall be perpendicular to the line touching the circle.

Let the straight line DE touch the circle ABC in the point C; take the centre F, and draw the straight line $F C: F C$ is perpendicular to DE .

For, if it be not, from the point F draw FBG perpendicular to DE ; and because FGC is a right angle, GCF is ${ }^{\mathrm{b}}$ an acute ${ }_{\mathrm{b}}$ 17. 1. angle; and to the greaterangle the greatest ${ }^{c}$ side is opposite: c 19.1.

Therefore

Eoor III. Therefore FC is greater than FG; but FC is equal to FB ; therefore FB is greater than FG; the less than the greater, which is impossible: Wherefore FG is not perpendicular to DE: In the same manner it may be shewn, that no other is perpendicular to it besides FC , that is FC is perpendicular to DE. Therefore, if a straight line,
 \&r. Q. E. D.

PROP. XIX. THEOR.

IF a straight line touches a circle, and from the point of contact a straight line be drawn at right angles to the touching line the centre of the circle shall be in that line.

Let the straight line $D E$ touch the circle $A B C$ in C, and from C let $C A$ be drawn at right angles to $D E$; the centre of the circle is in CA.

For, if not, let F be the centre, if possible, and join CF ; Because DE touches thecircle ABC, and FC is drawn from the centre to the point of contact, FC is perpendi= 18.3. cular ${ }^{3}$ to DE ; therefore FCE is a right angle : But ACE is also a right angle; therefore the angle FCE is equal to the angle $A C E$, the less to B the greater, which is impossible: Wherefore F is not the centre of the circle $A B C$: In the same manner, it may be shewn, that nolother point
 which it not in CA, is the centre ; that is, the centre is in $\mathrm{C} A$, Therefore, if a straight line, \&c. Q. E. D.

PROP". XX: 'THEOR.

Soe N. THE angle at the centre of a circle is double of the angle at the circumference, upon the same base, that is, upon the same part of the circumference.

Let ABC be a circle, and BEC an angle at the centre, and Book 111 . $B A C$ an angle at the circumference, which have the same circumference $B C$ for their base; the angle BEC is double of the angle BAC.

First, let E, the centre of the circle, be within the angle BAC, and join AE, and produce it to F : Because EA is equal to $E B$, the angle $E A B$ is equal ${ }^{2}$ to the angle EBA; therefore the angles EAB, EBA are double of the angle EAB; but the angle BEF is equal ${ }^{\mathrm{b}}$ to the angles $\mathrm{EAB}, \mathrm{EBA}$; therefore also the angle
 BEF is double of the angle EAB : For the same reason, the angle FEC is double of the angle EAC: Therefore the whole angle BEC is double of the whole angle BAD.

Again, let E, the centre of the circle, be without the angle BDC, and join DE, and produce it to G. It may be demonstrated, as in the first case, that the angle GEC is double of the angle GDC, and that GEB, a part of the first, is double of GDB, a part of the other; therefore the remanning angle BEC is double of the remaining angle BDC . Therefore the
 angle at the centre, \&ic. Q.E.D.

PROP. XXI. THEOR.

T
HE angles in the same segment of a circle are seas N . equal to one another.

Let $A B C D$ be a circle, and BAD, BED angles in the same segment BAED : The angles BAD, BED are equal to one another.

Take F , the centre of the circle ABCD: And, first, let the segment BAED be greater than a semicircle, and join BF, FD: And because the angle BFD is at the centre, and the angle BAD at the circumference,
 aid that they have the same part of

THE ELEMENTS

${ }^{\text {Boox III. }}$ the circumference, viz. BCD for their base ; therefore the an$=20.3$. gle $B F D$ is doublea of the angle $B A D$: For the same reason, the angle BFD is double of the angle BED: Therefore the angle BAD is equal to the angle BED.

But, if the segment BAED be not greater than a semicircle, let $B A D, B E D$ be angles in it ; these also are equal to one another: Draw AF to the centre, and produce it to C , and join CE: Therefore the segment BADC is greater than a semicircle ; and the angles in it BAC, BEC are equal, by the first case: For

- the same reason, because CBED is greater than a semicircle, the angles CAD, CED are equal: Therefore
 the whole angle BAD is equal to the whole angle BED. Wherefore the angles in the same segment, \&c. Q. E. D.

PROP. XXII. THEOR.

THE opposite angles of any quadrilateral figure described in a circle, are together equal to two right angles.
Lét ABCD be a quadrilateral figure in the circle ABCD ; any two of its opposite angles are together equal to two right angles.

2 52. 1.

- 21, 3.

Join $A C, B D$; and because the three angles of every triangle are equal ${ }^{2}$ to two right angles, the three angles of the triangle $C A B$, viz. the angles $C A B, A B C, B C A$ are equal to two right angles: But the angle $C A B$ is equal ${ }^{b}$ to the angle $C D B$, because they are in the same segment BADC , and the angle $A C B$ is equal to the angle ADB , because they are in the same segment ADCB: Therefore the whole angle $A D C$ is equal to the angle $C A B, A C B$: To each of these equals add the angle $A B C$; therefore
 the angles $\mathrm{ABC}, \mathrm{CAB}, \mathrm{BCA}$ are equal to the angles $\mathrm{ABC}, \mathrm{ADC}$: But $\mathrm{ABC}, \mathrm{CAB}, \mathrm{BCA}$ are equal to two right angles; therefore alsothe angles $A B C, A D C$ are equal to two right angles: In the same manner, the angles
$\mathrm{BAD}, \mathrm{DCB}$, may be shewn to be equal to two right angles. Boos III. Therefore, the opposite angles, \&rc. Q. E. D.

PROP. XXIII. THEOR.

UPON the same straight line, and upon the same see N . side of it, there cannot be two similar segments of circles, not coinciding with one another.

If it be possible, let the twe similar segments of circles, viz. $A C B, A D B$, be upon the same side of the same straight line AB , not coinciding with one another: Then, because the circle ACB cuts the circle ADB in the two points A, B, they cannot cut one another in any other point ${ }^{2}$: One of the segments must therefore fall within the other: Let ACB fall within ADB , and draw the straight line BCD , and
 join CA, DA: And because the segment $A C B$ is similar to the segment $A D B$, and that similar segments of circles contain ${ }^{\text {b }}$ equal angles; the angles ACB is $b 11$. def. 3. equal to the angle ADB , the exterior to the interior, which is impossible. ${ }^{\text {c }}$ Therefore, there cannot be two similar seg- c16. 1. ments of a circle upon the same side of the same line, which do not coincide. Q. E.D.

PROP. XXIV. THEOR.

SIMILAR segments of circles upon equal straight see .v. lines, are equal to one another.

Let AEB, CFD be similar segments of cricles, upon the equal straight lines $A B, C D$; the segment $A E B$ is equal the segment CFD.

For if the segment AEB be applied to the segments $C F D$, so as the point A be on C , and
 the straight line
$A B$ upon $C D$, the point B shall coincide with the point D, be-

THE ELEMENTS

Book II1. cause $A B$ is equal to $C D$; Therefore the straight line $A B$ co

- 23.3. inciding with $C D$, the segment $A E B$ must ${ }^{2}$ coincide with the segment CFD, and therefore is equal to it. Wherefore similar segments, \& c. Q. E. D.

PROP. XXV. PROB,

Sce N. A SEGMENT of a circlè being given, to describe the circle of which it-is the segment.

Let $A B C$ be the given segment of a circle; it is required to describe the circle of which it is the segment.
10.1
-11. 1.
e 6.1 .
49.3.

Bisect ${ }^{\text {a }} A C$ in D, and from the point $D d r a w ~^{b} \mathrm{DB}$ at right angles to $A C$, and join $A B$: First, let the angles $A B D, B A D$ be equal to one another; then the straight line $B D$ is equalc to DA, and therefore to DC ; and because the three straight lines $\mathrm{DA}, \mathrm{DB}, \mathrm{DC}$, are all equal ; D is the centre of the cir \rightarrow cle. ${ }^{\text {d }}$ From the centre D, at the distance of any of the three DA, DB, DC, describe a circle ; this shall pass through the other points; and the circle of which $A B C$ is a segment is described; And because the centre D is in $A C$, the segment $A B C$ is a sc-

micircle : But if the angles $A B D, B A D$ are not equal to one another, at the point A, in the straight line $A B$ make the angle $B A E$ equal to the angle $A B D$, and produce $B D$, if necessary, to E, and join EC: And because the angle $A B E$ is equal to the angle $B A E$, the straight line $B E$ is equale to $E A$: And because $A D$ is equal to DC , and DE common to the triangles $\mathrm{ADE}, \mathrm{CDE}$, the two sides AD, DE are equal to the two CD, DE, each to each; and the angle $A D E$ is equal to the angle CDE, for each of them is 2 right angle; therefore the base $A E$ is equal ' to the base EC: But AE was shewn to be equal to EB, where- fore also BE is equal to EC : And the three straight lines AE ,
$E B, E C$ are therefore equal to one another; wherefore ${ }^{d} E$ is Boox III. the centre of the circle. From the centre E, at the distance of any of the three $\mathrm{AE}, \mathrm{EB}, \mathrm{EC}$, describe a circle, this shall pass: 9.3. through the other points; and the circle of which $A B C$ is a segment is described: And it is evident, that if the angle ABD be greater than the angle BAD , the centre E falls without the segment $A B C$, which therefore is less than a semicircle: But if the angle $A B D$ be less than $B A D$, the centre E falls within the segment $A B C$, which is therefore greater than a semicircle: Wherefore a segment of a circle being given, the circle is described of which it is a segment. Which was to be done.

PROP. XXVI. THEOR.

IN equal circles, equal angles stand upon equal circumferences, whether they be at the centres or circumferences.

Let $A B C, D E F$ be equal circles, and the equal angles $B G C$, EHF at their kentres, and BAC, EDF' at their circumferences: The circumference BKC is equal to the circumlerence ELF.

Join BC, EF; and because the circles AB ; , DEF are equal, the straight lines drawn from their centres are equal: Therefore the two sides BG, GC, are equal to the two EH, HF;

and the angle at G is equal to the angle at H ; therefore the base BC is equal ${ }^{2}$ to the base EF. And because the angle at $A=4.1$. is equal to the angle at D, the segment $B A C$ is similar ${ }^{b}$ to the $e^{0.11, ~ d e f . ~} 7$. jegment $E D F$; and they are upon equal straight lines $B C, E F$; out similar segments of circles upon equal straight lines are :qualc to one another, therefore the segment BAC is equal to c24.3. the segment EDF: But the whole eircle $A B C$ is equal to the

Book III. whole DEF, therefore the remaining segment BKC is equal to the remaining segment ELF, and the circunference BKC to the circumference ELF. Wherefore, in equal circles, \&ic. Q. E. D.

PROP. XXVII. THEOR.

IN equal circles, the angles which stand upou equal circuinferences are equal to one another, whether they be at the centres or circumferences.

Let the angles BGC, EHF at the centres, and BAC, EDF at the circumferences of the equal circles $\mathrm{ABC}, \mathrm{DEF}$ stand upon the equal circumferences BC, EF : The angle BGC is equal to the angle EHF, and the angle BAC to the angle EDF.

If the angle BGC be equal to the angle EHF, it is manifest 2.2. 3. - an that the angle BAC is also equal to EDF. But, if not, one

of them is the greater : Let BGC be the greater, and at the
-23.1. point G, in the straight line $B G$, make ${ }^{b}$ the angle $B G K$ equal to the angle EHF; but equal angles stand upon equal circumferences ${ }^{c}$, when they are at the centre; therefore the circumference BK is equal to the circumference EF : But EF is equal to BC ; therefore also BK is equal to BC , the less to the greater, which is impossible: Therefore the angle BGC is not unequal to the angle EHF ; that is, it is equal to it: And the angle al A is half of the angle BGC, and the angle at D half of the angle EHF : Therefore the angle at A is equal to the angle at D. Wherefore, in equal circles, \&cc. Q. E. D.

PROP. XXVIII. THEOR.

IN equal circles, equal straight lines cut off equal circumferences, the greater equal to the greater, and the less to the less.

Let $A B C, D E F$ be equal circles, and $B C, E F$ equal straight lines in them, which cut off the two greater circumferences BAC, EDF, and the two less BGC, EHF : the greater BAC is equal to the greater EDF, and the less BGC to the less EHF.

Take ${ }^{2} \mathrm{~K}, \mathrm{~L}$, the centres of the circles, and join $\mathrm{BK}, \mathrm{KC}, \mathrm{EL},{ }^{2} \mathrm{r} .3$. LF: And because the circles are equal, the straight lines from

their centres are equal ; therefore BK, KC are equal to EL , LF ; and the base BC is equal to the base EF ; therefore the angle $B K C$ is equal to the angle ELF: But equal angles stand os. it. upon equalc circumferences, when they are at the centres; c 26.3 . therefore the circumference BGC is equal to the circumference EHF. But the whole circle $A B C$ is equal to the whole EDF; the remaining part therefore of the circumference, viz. BAC , is equal to the remaining part EDF . Therefore, in equal circles, \&oc. Q. E. D.

PROP. XXIX. THEOR.

IN equal circles, equal circumferences are subtended by equal straight lines.

Let $\mathrm{ABC}, \mathrm{DEF}$ be equal circles, and let the circumferences $\mathrm{BGC},$,EHF also be equal ; and join BC, EF : The straight line BC is equal to the straight line EF .

Book III. Take ${ }^{3} \mathrm{~K}, \mathrm{~L}$, the centres of the circles, and join BK, KC,
31.3.

- 27. circumference EHF , the angle BKC is equal ${ }^{\text {b }}$ to the angle ELF : And because the circles $\mathrm{ABC}, \mathrm{DEF}$, are equal, the straight lines from their centres are equal: Therefore BK, KC are equal to EL, LF, and they contain equal angles: Therefore the base BC, is equalc to the base EF. Therefore, in equal circles, \&c. Q. E. D.

PROP. XXX. PROB.

To bisect a given circumference, that is, 10 divide it into two equal parts.

Let $A D B$ be the given circumference ; it is required to bisect it.

Join $A B$, and bisect ${ }^{2}$ it in C; from the point C draw $C D$ at right angles to $A B$, and join $A D, D B$: The circumference $A D B$ is bisected in the point D.

Because $A C$ is equal to $C B$, and $C D$ common to the triangles $\mathrm{ACD}, \mathrm{BCD}$, the two sides AC, CD are equal to the two $B C, C D$; and the angle ACD) is equal to the angle $B C D$, because each of them is a right angle: Therefore the base AD is equal

- 4.1. ${ }^{5}$ to the base BD . But equal straight
 lines cut off equale circumferences, the greater equal to the gréater, and the less to the less, and AD, DB are each of them less than a semicircle; because DC passes through the cen-
- Cor. 3.3. tred : Wherefore the circumference $A D$ is equal, to the circumference DB: Therefore the given circumference is bisected in D. Which was to be done.

PROP. XXXI. THEOR.

IN a circle, the angle in a semicircle is a right angle ; but the angle in a segment greater than a semicircle is less than a right angle; and the angle in a segment less than a semicircle is greater than a right angle.
Let ABCD be a circle, of which the diameter is BC , and centre E ; and draw CA , dividing the circie into the segments $A B C, A D C$, and join $B A, A D, D C$; the angle in the semicircle BAC is a right angle; and the angle in the segment $A B C$; which is greater than a semicircle, is less than a right angle; and the angle in the segment ADC , which is less.than a semicircle, is greater than a right angle.

Join $A E$, and produce $B A$ to F : and because $B E$ is equal to $E A$, the arigle $E A B$ is equal ${ }^{2}$ to $E B A$; also, because $A E^{25.1 .}$ is equal to EC ; the angle EAC is equal to ECA; wherefore the whole angle $B A C$ is equal to the two angles $\mathrm{ABC}, \mathrm{ACB}$: But FAC, the exterior angle of the triangle $A B C$, is equal to the two angles $\mathrm{ABC}, \mathrm{ACB}$: therefore the angle $B A C$ is equal to the angle $F A C$, and each of them is therefore a rightc angle: Wherefore the angle BAC in a semicircle is a right angle.

And because the two angles $\mathrm{ABC}, \mathrm{BAC}$ of the triangle $A B C$ are together less ${ }^{d}$ than two right angles, and that $B A \bar{C} C^{[} 1 T_{z}$). is a right angle, ABC must be less than a right angle; and therefore the angle in a segment ABC greater than' a semicirtle, is less than a right angle.
And because $A B C D$ is a quadrilateral figure in a circle, any two of its opposite angles are equal to two right angles : e eno. 3. herefore the angles $A B C, A D C$ are equal to two right anles; and $A B C$ is less than a right angle; wherefore the other $A D C$ is greater than a right angle.
Besides, it is manifest, that the circumference of the greater egment $A B C$ falls without the right angle $C A B$; but the Eircumference of the less segment ADC falls within the right agle CAF.' 'And this is all that is meant, when in the

Boor III. 'Greek text; and the translations from it, the angle of the ' greater segment is said to be greater, and the angle of the less 'segment is said to be less, than a right angle.'

COR. From this it is manifest, that if one angle of a triangle be equal to the other two, it is a right angle, because the angle adjacent to it is equal to the same two; and when the adjacent angles are equal, they are right angles.

PROP. XXXII. THEOR.

I F a straight line touches a circle, and from the point of contact a straight line be drawn cuiting the circle, the angles made by this line with the line touching the circle, shall be equal to the angles which are in the alternate segments of the circle.

Let the straight line EF touch the circle ABCD in B , and from the point. B let the straight line BD be drawn, cutting the circle: 'The angles which BD makes with the touching line EF shall be equal to the angles in the alternate segments of the circle: that is, the angle FBD is equal to the angle which is in the segment $D A B$, and the angle DBE to the angle in the segment BCD.

From the point B draw ${ }^{2} \mathrm{BA}$ at right angles to EF , and take any point C in the circumference $B D$, and join $A D, D C, C B$; and because the straight line EF touches the circle $A B C D$ in the point B, and $B A$ is drawn at right angles to the touching line from the point of contact B , the
بate on cite is ni 10, centre of the circle is ${ }^{b}$ in BA ; therefore the angle ADB in a sem:circle is a right ${ }^{\text {c }}$ angle and consequently theorher wo angles BAD , $A B D$ are equald to a right angle: But ABF is likewise a right angle: therefore the angle $A B F$ is equal to the angles $\mathrm{BAD}, \mathrm{ABD}$: Take from
 these equals the common angle $A B D$; therefore the remaining angle $D B F$ is equal to the angle BAD, which is in the alternate segment of tbe circle; and because $A B C D$ is a quadrilateral figure in a circle, the opposite angles $\mathrm{BAD}, \mathrm{BCD}$ are equale to two right angles : therefore
the angles DBF, DBE, being likewise equal to two right an- Book III. ${ }^{*}$ gles, are equal to the angles $\mathrm{BAD}, \mathrm{BCD}$: and DBF has been $\mathrm{f}_{5} 13.1$. proved equal to BAD: Therefore the remaining angle DBEis equal to the angle BCD in the alternate segment of the circe. Wherefore, if a straight line, \&ic. Q. E. D.

PROP. XXXIII. PROB.

UPON a given straight line to describe a segment of a circle, containing an angle equal to a given $\sec \mathrm{N}$. rectilineal angle.

Let $A B$ be the given straight line, and the angle at C the given rectilineal angle; it is required to describe upon the given straight line $A B$ a segment of a circle, containing an angle equal to the angle C .

First, let the angle at \mathbf{C} be a right angle, and bisect ${ }^{5} \mathrm{AB}$ in F , and from the centre F, at the distance FB , describe the semicircle AHB ; therefore the angle AHB in a semicircle is ${ }^{b}$ equal to the right angle at C.

But, if the angle C be not a right angle, at the point A , in the straight line $A B$, make ${ }^{\circ}$ the angle $B A D$ equal to the angle c 23.1 . C, and from the point A $\mathrm{draw}^{\mathrm{d}} \mathrm{AE}$ at right angles to AD ; bisect ${ }^{2} \mathrm{AB}$ in F , and from F draw $^{\mathrm{d}} \mathrm{FG}$ at right angles to AB , and join GB : And because AF is equal to $F B$, and $F G$ common to the triangles $\mathrm{AFG}, \mathrm{BFG}$, the two sides $A F, F$ are equal to the two BF, FG; and the angle AFG is equal to the
 angle BFG; therefore the

THE ELEMENTS,

Boon IL. right angles to AE , therefore $\mathrm{AD}^{\text {f }}$ touches the circle; and be-
Cor. 16.3. cause AB drawn from the point of contact A cuts the circle, the angle DAB is equal to the angle -32.3. in the alternate segment AHBs : But the angle $D A B$ is equal to the angle C, therefure also the angle C is equal to the angle in the segment AHB : Wherefore, upon the given straight line AB the segment AHB of a circle is
 described, which contains an angle equal to the given angle at C. Which was to be done.

PROP. XXXIV. PROB.

TO cut off a segment from a given circle which shall contain an angle equal to a given rectilineal angle.

Let $A B C$ be the given circle, and D the given rectilineal angle; ;it is required to cut off a segment from the circle ABC that shall contain an angle equal to the given angle D .

Draw ${ }^{2}$ the straight line EF touching the çircle $A B C$ in the point B, and at the point B , in the straight line BF , make ${ }^{\text {b }}$ the angle FBC equal to the angle D : Therefore, because the straight line EF touches the circle $A B C$, and $B C$ is drawn from the point of contact B, the angle $F B C$ is equalc to the angle in the alternate segment BAC
 of the circle; But the angle $F B C$ is equal to the angle D : therefore the angle in the segment BAC is equal to the angle D : Wherefore the segment $B A C$ is cut off from the given circle $A B C$, containing an angle equal to the given angle D : Which was to be done.

OFEUCLID.

PROP. XXXV. THEOR.

IF two straight lines within a circle cut one anoSce N. ther, the rectangle contained by the segments of one of them, is equal to the rectangle contained by the segments of the other.

Let the two straight lines AC, BD, within the circle $A B C D$, cut one another in the point E : the rectangle contained by AE, EC is equal to the rectangle contained by BE, ED.

If $A C, B D$ pass each of them through the centre, so that E is the centre; it is cvident, that $\mathrm{AE}, \mathrm{EC}, \mathrm{BE}, \mathrm{ED}$, being all equal, the rectangle AE, EC is likewise equal to the rectangle $B E, E D$.

But let one of them BD pass through the centre, and cut the other AC which does not pass through the centre, at right angles, in the point E : Then, if $B D$ be bisected in F, F is the centre of the circle $A B C D$; join $A F$: And because $B D$, which passes through the centre, cuts thestraight line AC, which does not pass through the centre, at right angles in $\mathrm{E}, \mathrm{AE}, \mathrm{EC}$ are equal ${ }^{2}$ to one another : And because the straight line BD is cut into two equal parts in the point F, and into two unequal in the point E, the rectangle BE , $E D$, together with the square of EF , is equal ${ }^{b}$ to the square of FB ; that is, to the square of FA ; but the squares of $A E, E F$ are equal ${ }^{\text {c }}$ to the square of FA ; therefore the rectangle BE ,

ED , together with the square of EF , is equal to the squares of AE, EF : Take away the common square of EF , and the remaining rectangle BE, ED is equal to the remaining square of AE ; that is, to the rectangle AE, EC,

Next, let BD, which passes through the centre, cut the other AC, which does not pass through the centre, in E, but not at right angles : Then, as before, if BD be bisected in F, F is the centre of the circle. Join AF, and from F draw ${ }^{d}$ FG per- d12. 1. pendicular

"THEELEMENTS

Book III, 2.3.3.
pendicular to $A C$; therefore ΛG is equal ${ }^{3}$ to $G C$; wherefore the rectangle AE, EC, together with the square of EG is equal ${ }^{b}$ to the square of $A G$: To each of these equals add the square of GF ; therefore the rectangle AE, EC, together with the squares of EG, GF is equal to the squares of $A G, G F: B u t$ the squares of EG, GF are equale to the square of EF ; and the squares of AG, GF are equal to the square of AF: Therefore the rectangle AE, $E C$, together with the square of $E F$, is equal to the square of AF ; that is, to the square of FB : But the
 square of FB is equal ${ }^{\mathrm{b}}$ to the rectangle BE, ED, together with the square of EF ; therefore the rectangle AE, EC, together with the square of EF , is equal to the rectangle BE, ED, together with the square of EF : T'ake away the common square of EF , and the remaining rectangle AE, EC, is therefore equal to the remaining rectangle BE, ED. -

Lastly, Let neither of the straight lines AC, BD pass through the centre: Take the centre F, and through E, the intersection of the straight lines $A C, D B$, draw the diameter GEFH: And because the rectangle AE, EC is equal, as has been shewn, to the rectangle GE , EH ; and, for the same reason, the rectangle BE, ED is equal to the same rectangle GE, EH; therefore the rectangle AE, EC is equal to the
 rectangle BE, ED. Wherefore, if two straight lines, \&c. Q.E.D.

PROP. XXXVI. THEOR.

If F from any point without a circle two straight lines be drawn, one of which cuts the circle, and the other touches it; the rectangle contained by the whole line which cuts the circle, and the part of it without the circle, shall be equal to the square of the line which touches it.
Let D be any point without the circle $A B C$, and $D C A, D B$ two straight lines drawn from it, of which DCA cuts the circle,
and DB touches the same : The rectangle AD, DC is equal Boox 115 . to the square of DB .

Either DCA passes through the centre, or it does not; first, let it pass through the centre E, and join EB ; therefore the angle EBD is a right ${ }^{2}$ angle: And because the straight line $A C$ is bisected in E, and produced to the point D, the rectangle AD, DC, together with the square of EC , is equal ${ }^{\mathrm{b}}$ to the square of ED, and CE is equal to EB: Therefore the rectangle $A D, D C$, together with the square of $E B$, is equal to the square of ED: But the square of ED is equal to the squares of EB, BD, because EBD is a right angle : Therefore the rectangle AD, DC, together with the square of EB , is equai to the squares
 of $E B, B D$: Take away the common square of EB ; therefore the remaining rectangle AD, DC, is equal to the square of the tangent DB .

But if DCA does not pass through the centre of the circle ABC, take ${ }^{d}$ the centre E, and draw EF perpendicular ${ }^{c}$ to ${ }^{d} 1.3$. $A C$, and join EB, EC, ED: And because the straight line EF, which passes through the centre, cuts the straight line $A C$, which does not pass through the centre, at right angles, it shall likewise bisect ${ }^{\text {f }}$ it ; therefore AF is equal to FC: And because the straight line AC is bisected in F , and produced to D , the rectangle $A D, D C$, together with the square of FC , is equal ${ }^{b}$ to the square of FD : To each of these equals add the square of FE ; therefore the rectangle AD, DC, together with the squares of CF, FE, is equal to the squares of DF, FE : But the square of $E D$ is equals to the squares of DF, FE, because EFD is a right ar-gle : and the square of EC is equal to
 the squares of CF, FE; therefore the rectangle AD, DC, together with the square of EC , is equal to the square of ED : And $C E$ is equal to $E B$; therefore the rectangle $A D, D C$, together with the square of $E B$, is equal to the square of $E D$:

THE.ELEMENTS

Boor III. But the squares of EB, BD are equal to the square ${ }^{\mathrm{c}} \mathrm{of} \mathrm{ED}$, because EBD is a right angle; therefore the rectangles $A D$, $D C$, together with the square of $E B$, is equal to the squares of EB, BD; Take away the common square of EB ; therefore the remaining rectangle $A D, D C$ is equal to the square of DB. Wherefore, if from any point, \&ic. Q. E. D.

Cor. If from any point without a circle, there be drawn two straight lines cutting it, as $A B, A C$, the rectangles contained by the whole lines and the parts of them without the circle, are equal to one another, viz. the rectangle BA, AE, to the rectangle CA, AF: For each of them is equal to the square of the straight line AD which touches the circle.

PROP. XXXVII. THEOR.

See N F from a point without a.circle there be drawn two straight lines, one of which cuts the circle, and the other meets it; if the rectangle contained by the whole line which cuts the circle, and the part of it without the circle be cqual to the square of the line which meets it, the line which meets shall touch the circle.

Let any point D be taken without the circle $A B C$, and from it let two straight lines DCA and DB be drawn, of which DCA cuts the circle, and DB meets it; if the rectangle AD, $D C$ be equal to the square of $\mathrm{DB} ; \mathrm{DB}$ touches the circle.

Draw ${ }^{\text {a }}$ the straight line $D E$, touching the circle $A B C$, find its centre F, and join $F E, F B, F D$; then $F E D$ is a right ${ }^{b}$ an-
a 17.3.
18.3.
c 26.3. gle : And beeause DE touches the circle ABC, and DCA cuts it, the rectangle AD, DC is equalc to the square of DE : But the rectangle $A D, D C$ is, by hypothesis, equal to the square of $D B:$ Therefore the square of $D E$ is equal to the square of $D B$; and the straight line DE equal to the straight line DB: And

OFEUCLID.

$F E$ is equal to $F B$, wherefore $D E, E F$ are equal to $D B, B F$; Boox DII . and the base FD is common to the two triangles $\mathrm{DEF}, \mathrm{DBF}$; therefore the angle DEF is equald to the angle DBF; but DEF is a right angle, therefore also DBF is a right angle : And FB, if produced, is a diameter, and the straight line which is drawn at right angles to a diameter, from the extremity of it, touches the circle: Therefore DB touches the circle $A B C$. Wherefore, if from 2 point, \&c. Q.E..D.

[94]
 THE
 ELEMENTS
 of

 EUCLID.

 EUCLID.}

BOOK. IV.

DEFINITIONS.

I.

$\underbrace{}_{\text {Sook IV. }} \underbrace{\text { A }}$Rectilingal figure is said to be inscribed in another See N. rectilineal figure, when all the angles of the inscribed figure are upon the sides of the figure in which it is inscribed, each upon each:
II.

In like manner, a figure is said to be described about another figure, when all the sides of the circumscribed figure pass through the
 angular points of the figure about which it is described, each through each.

III.

A rectilineal figure is said to be inscribed in a circle, when all the angles of the inscribed figure are upon the circumference of the circle.

IV.

A rectilincal figure is said to be described about a circle, when each side of the circumscribed figure touches the circumference of the circle.
V.

In like manner, a circle is said to be inscribed in a rectilineal figure, when the circumference of the circle touches each side of the figure.

THEELEMENTS OF EUCLID.

 95VI.

A circle is said to be described about a rectilineal figure, when the circumference of the circle passes through all the angu.lar points of the figure about which it is described.
VII.

A straight line is said to be placed in a circle, when the extremities of it are in the circumference of the circle.

PROP. I. PROB.

IN a given circle to place a straight line, equal to a given straight line not greater than the diameter of the circle.

Let $A B C$ be the given circle, and D the given straight line, not greater than the diameter of the circle.

Draw $B C$ the diameter of the circle $A B C$; then, if $B C$ is equal to D, the thing required is done; for in the circle $A B C$ a straight line $B C$ is placed equal to D : But, if it is not, $B C$ is greater than D; make $C E$ equal ${ }^{3}$ to D , and from the centre C , at the distance CE , describe the circle AEF, and join CA: 'Therefore, because C is the centre of the circle $\mathrm{AEF}, \mathrm{CA}$ is equal to CE ;
 but D is equal to $C E$; therefore D is equal to $C A$: Wherefore in the circle $A B C$, a straight line is placed equal to the given straight line D, which is not greater than the diameter of the circle. Which was to be done.

PROP. II. PROB.

IN^{-}a given circle to inscribe a triangle equiangular to a given triangle.

Book, 1V. Let ABC be the given circle, and DEF the given triangle ; it is requircd to inscribe in the circle $A B C$ a triangle equiangular to the triangle DEF.
$=17.3$.
Draw ${ }^{\text {a }}$ the straight line GAH touching the circle in the

- 23.1. point A , and at the point A , in the straight line AH , make ${ }^{\mathrm{b}}$ the angle HAC equal to the angle $D E F$; and at the point A in the straight line $A G$, nake the angle GAB equal to the angle DFE, and join BC : Thererore, because HAG touches the circle ABC, and $A C$ is drawn from the point of contact, the
- 32.3. angle HAC is equalc to the angle $A B C$ in the
 alternate segment of the circle: But HAC is equal to the angle $D E F$: therefore also the angle $A B C$ is equal to $D E F$: For the same reason, the angle ACB is equal to the angle
d30.1. DFE; therefore the remaining angle BAC is equald to the remaining angle EDF: Wherefore the triangle $A B C$ is equiangular to the triangle DEF, and it is inscribed in the circle ABC. Which was to be done.

PROP. III, PROB.
AbOU'r a given circle to describe a triangle equiangular to a given triangle.

Let ABC be the given circle, and DEF the given triangle; it is required to describe a triangle about the circle ABC equiangular to the triangle DEF.

- Produce EF both ways to the points, G, H, and find the

2 23.1. $K B$; at the point K, in the straight line $K B$, make ${ }^{\text {a }}$ the angle BKA equal to the angle DEG, and the angle BKC equal to the angle DFH; and through the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, draw the
-17. 3. straight lines LAM; MBN, NCL, touching the circle ABC: Therefore, because LM, MN, NL touch the circle $A B C$ in the points Λ, B, C, to which from the centre are drawn $K A, K B$,
c 18. 3. KC, the angles at the points A, B, C, are right ${ }^{c}$ angles : And because the four angles of the quadrilateral figure ANNBK are

OF EUCLID.

equal to four right angles, for it can be divided into two trian. Boox IV. gles ; and that two of them KAM, KBM are right angles, the other two AKB, AMB are equal to two right angles: But the angles DEG, DEF are likewise equald to two right angles; thereore the angles $\mathrm{AKB}, \mathrm{AMB}$ are equal to the angles

DEG,
 DEF, of which AKB is equal to DEG ; wherefore the remaining angle $\mathrm{A} M \mathrm{M}$ is equal to the remaining angle DEF : In like manner, the angle LNM may be demonstrated to be equal to DFE; and therefore the remaining angle MLN is equale to the remain- es2.1. ing angle EDF: Wherefore the triangle LMN is equiangular to the triangle DEF: And it is described about the circle ABC. Which was to be done.

PROP. IV. PROB.

To inscribe a circle in a given triangle.
Sce Ñ.
Let the given triangle be ABC ; it is required to inscribe a circle in ABC.

Bisecta the angles $A B C, B C A$ by the straight lines $B D, C D=9.1$. meeting one another in the point D , from which draw $\mathrm{DE}, 012.1$. DF, DG perpendiculars to $A B$, BC, CA : And because the angle $E B D$ is equal to the angle $F B D$, for the angle $A B C$ is bisected by BD , and that the right angle BED is equal to the right angle BFD , the two triangles EBD, FBD have two angles of the one equal to two angles of the other, and the side $B D$, which is opposite to one of the equal angles in each, is common to both; therefore their other sides shall be H

equal;

THE ELEMENTS

Book IV.

- 26. 27.

-16. 3.
equale; wherefore $D E$ is equal to $D F$: For the same reason, $D G$ is equal to DF ; therefore the three straight linesDE, DF, DG are equal to one another, and the circle described from the centre D, at the distance of any of them, shall pass through the extremities of the other two, and touch the straight lines $A B, B C, C A$, because the angles at the points E, F, G, are right angles, and the straight line which is drawn from the extremity of a diameter at right angles to. it, touches ${ }^{d}$ the circle: Therefore the straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ do each of them touch the circle, and the circle EFG is inscribed in the triangle ABC. Which was to be done.

PROP. V. PROB.
See N "TOO describe a circle about a given triangle.
Let the given triangle be ABC ; it is required to describe a circle about $A B C$.

Bisect AB, AC in the points D, E, and from these points
210.1. draw DF, EF at right angles ${ }^{b}$ to $A B, A C ; D F, E F$ produced

meet one another: For, if they do not meet, they are parallel wherefore $A B, A C$, which are at right angles to them, are pa rallel; which is absurd: Let them meet in F, and join FA also if the point F be not in $B C$, join $B F, C F$: Then, becauss AD is equal to DB , and DF common, and at right angles t!
c 4. 1. $A B$, the base $A F$ is equalc to the base $F B$. In like manner, may be shown that CF is equal to FA ; and therefore BF i equal to FC ; and $\mathrm{FA}, \mathrm{FB}, \mathrm{FC}$ are equal to one another wherefor

OF EUCLID.

wherefore the circle described from the centre F, at the distance of one of them, shall pass through the extremities of the other two, and be described about the triangle ABC. Which was to be done.

Cor. And it is manifest, that when the centre of the circle falls within the triangle, each of its angles is less than a right angle, each of them being in a segment greater than a semicircle; but, when the centre is in one of the sides of the triangle, the angle opposite to this side, being in a semicircle, is a right angle; and, if the centre falls without the triangle, the angle opposite to the side beyond which it is, being in a segment less than a semicircle, is greater than a right angle: Wherefore, if the given triangle be acute angled, the centre of the circle falls within it; if it be a right angled triangle, the centre is in the side opposite to the right angle; and, if it be an obtuse angled triangle, the centre falls without the triangle, beyond the side opposite to the obtuse angle.

PROP. VI. PROB.

To inscribe a square in a given circlé.
Let ABCD be the given circle ; it is required to inscribe a square in $A B C D$.

Draw the diameters $A C, B D$, at right angles to one another; and join $A B, B C, C D, D A$; because $B E$ is equal to $E D$, for E is the centre, and that EA.is common, and at right angles to BD ; the base BA is equal ${ }^{2}$ to the base AD ; and, for the same reason, BC, CD are each of them equal to BA , or AD ; therefore the quadrilateral figure ABCD is equilateral. It is also rectangular ; for the straight line BD , being the diameter of the circle $\mathrm{ABCD}, \mathrm{BAD}$ is a semicircle; wherefore the angle $B A D$ is a right ${ }^{b}$ an-
 gle; for the same reason each of the angles $A B C, B C D, C D A$, is a right angle; therefore the quadrilateral figure ABCD is rectangular, and it has been shown to be equilateral; therefore it is a square; and it is inscribed in the circle $A B C D$ Which was to be done.

THE ELEMENTS

PROP. VII. PROB.
TO describe a square about a given circle.
Let $A B C D$ be the given circle ; it is required to describe a square about it.

Draw two diameters AC, BD of the circle ABCD , at right angles to one another, and through the points A, B, C, D,
217.3. draw ${ }^{2}$ FG, GH, HK, KF touching the circle; and because FG touches the circle $A B C D$, and $E A$ is drawn from the centre
-18.3. E to the point of contact A, the angles at A are right ${ }^{b}$ angles; for the same reason, the angles at the points B, C, D are right angles; and because the angle $A E B$ is a right angle, as likewise is EBG, GH is parallel ${ }^{\text {c }}$ to AC ; for the same reason, AC is parallel to FK , and in like manner GF, HK may each of them be demonstrated to be parallè to BED; therefore the figures $\mathrm{GK}, \mathrm{GC}, \mathrm{AK}$, FB, BK are parallelograms ; and GF is therefore equald to HK , and GH to FK ; and because AC is equal to
 BD , and that AC is equal to each of the two GH, FK; and BD to each of the two GF, HK: GH, FK are each of them equai to GF or HK ; therefore the quadrilateral figure FGHK is equilateral. It is also rectangular ; for GBEA being a parallelogram, and AEB a right angle, $\mathrm{AGB}^{\mathrm{d}}$ is likewise a right angle: In the same manner it may be shown that the angles at $\mathrm{H}, \mathrm{K}, \mathrm{F}$ are right angles ; therefore the quadrilateral figure FGHK is rectangular, and it was demonstrated to be equilateral ; therefore it is a square; and it is described about the circle $A B C D$. Which was to be done.

PROP. VIII. PROB.

' $'$ O inscribe a circle in a given square.

Let $A B C D$ be the given square; it is required to inscribe a circle in $A B C D$.

Bisect ${ }^{2}$ each of the sides $A B, A D$, in the points F, E, and through E draw ${ }^{\text {b }} \mathrm{EH}$. parallel to $A B$ or $D C$, and through F
draw FK parallel to AD or BC ; therefore each of the figures AK, $\mathrm{KB}, \mathrm{AH}, \mathrm{HD}, \mathrm{AG}, \mathrm{GC}, \mathrm{BG}, \mathrm{GD}$, is a parallelogram, and their opposite sides are equalc; and because AD is equal to AB , and that $A E$ is the half of $A D$, and $A F$ the half of $A B, A E$ is equal to AF ; wherefore the sides opposite to these are equal, viz. FG to GE; in the same manner it may be demonstrated that GH, GK are each of them equal to FG or GE : therefore the four straight lines $\mathrm{GE}, \mathrm{GF}, \mathrm{GH}$, GK are equal to one another; and the circle described from the centre G at the distance of one of them, shall pass through the extremities of the other three, and touch the straight lines $A B$,
 $B C, C D, D A$; because the angles at the points E, F, H, K, are right ${ }^{\text {d }}$ angles, and that the siraight line which is drawn from d29.1. the extremity of a diameter, at right angles to it, touches the circle ${ }^{e}$; therefore each of the straight lines, $\mathrm{AB}, \mathrm{BC}, \mathrm{CD},{ }^{\mathrm{e}}{ }^{16.3 .}$ DA touches the circle, which therefore is inscribed in the square $A B C D$. Which was to be done.

PROP. IX. PROB.
To describe a circle about a given square.
Let $A B C D$ be the given square ; it is required to describe 2 circle about it.

Join AC, BD, cutting one another in E ; and because DA is equal to AB , and AC common to the triangles $\mathrm{DAC}, \mathrm{BAC}$, the two sides DA, AC are equal to the two $B A, A C$, and the base $D C$ is equal to the base BC ; wherefore the angle DAC is equals to the angle BAC, and the angle $D A B$ is bisected by the straight line $A C$: In the same manner, it may be demonstrated that the angles $\mathrm{ABC}, \mathrm{BCD}$, CDA are severally bisected bythe straight lines $B D, A C$; therefore, because the angle $D A B$ is equal to the angle $A B C$, and that the angle EAB is the half of DAB, and EBA the half of ABC : the angle EAB is equal to the angle EBA; wherefore the side $E A$ is equal ${ }^{b}$ to the side $E B$: In the same manner, it may be ${ }^{\circ} 6,10$

$$
\mathrm{H}_{3} \text { demonstratedt? }
$$

Book IV. demonstrated, that the straight lines EC, ED are each of them equal to EA or EB; therefore the four straight lines $\mathrm{EA}, \mathrm{EB}, \mathrm{EC}, \mathrm{ED}$, are equal to one another ; and the circle described from the centre E, at the distance of one of them, shall pass through the extremities of the other three, and be described about the square ABCD . Which was to be done.

PROP. X. PROB.

HO describe an isosceles triangle, having each of the angles at the base double of the third angle.
a 11.2.
s 1. 4.
:32. 1.
\qquad

Take any straight line $A B$, and divide ${ }^{\text {it }}$ in the point C, so that the rectangle $A B, B C$ be equal to the square of $C A$; and from the centre A, at the distance $A B$, describe the circle $B D E$, in which place ${ }^{\text {b }}$ the straight line $B D$ equal to $A C$, which is not greater than the diameter of the circle BDE ; join DA, DC, and about the triangle ADC describe the circle ACD ; the triangle ABD is such as is required, that is, each of the angles $\mathrm{ABD}, \mathrm{ADB}$ is double of the angle BAD .

Because the rectangle $A B, B C$ is equal to the square of $A C$, and that $A C$ is equal to $B D$, the rectangle $A B, B C$ is equal to the square of BD ; and because from the point B, without the circle ACD, two straight lines $B C A, B D$ are drawn to the circumference, one of which cuts, and the other meets the circle, and that the rectangle $A B, B C$, contained by the whole of the cutting line, and the part of it without the circle, is equal to the square of BD which meets it ; the straight line BD touches ${ }^{d}$ the circle ACD ; and because BD touches the circle, and IDC
 is drawn from the point of contact D , the angle BDC is equale to the angle DAC in the alternate segment of the circle ; to each of these add the angle CDA; therefore the whole angle BDA is equal to the two angles $C D A, D A C$; but the exterior angle $B C D$ is equalf to the angle CDA, DAC ; therefore also B1)A is equal to BCD ;
but BDA is equals to the angle CBD,because the side AD Book IV. is equal to the side AB ; therefore CBD , or DBA ; is equal to ${ }_{5.1}$. BCD ; and consequently the three angles $\mathrm{BDA}, \mathrm{DBA}, \mathrm{BCD}$, are equal to one another ; and because the angle DBC is equal to the angle $B C D$, the side $B D$ is equal ${ }^{h}$ to the side $D C$; but ${ }^{\mathrm{B}} 6.1$. BD was made equal to CA , therefore also CA is equal to $C D$, and the angle CDA equals to the angle DAC ; therefore the angles CDA, DAC together, are double of the angle DAC : But BCD is equal to the angles $\mathrm{CDA}, \mathrm{DAC}$; therefore also $B C D$ is double of $D A C$; and $B C D$ is equal to each of the angles $\mathrm{BDA}, \mathrm{DBA}$; each therefore of the angles BDA , DBA is double of the angle DAB wherefore an isosceles triangle ABD is described, having each of the angles at the base double of the third angle. Which was, to be done.

PROP XI. PROB.

Tagon in a given circle.

Let $A B C D E$ be the given circle; it is required to inscribe an equilateral and equiangular pentagon in the circle ABCDE .

Describe ${ }^{2}$ an isosceles triangle FGH, having each of the an- ${ }^{2}$ 10. 4. gles at G, H, double ot the angle at F; and in the circle ABCDE inscribe ${ }^{\text {b }}$ the triangle ACD equiangular to the trian- ${ }^{6} \approx 4$. gre FGH, so that the angle CAD be equal to the angle at F, and each of the angles $\mathrm{ACD}, \mathrm{CDA}$ equal to the angle at G or H , wherefore each of the angles $A C D$, CDA is double of the angle CAD. Bisect ${ }^{\text {c }}$ the angles $\mathrm{ACD}, \mathrm{CDA}$ by the straight lines $C E, D B$; and join $A B$, $\mathrm{BC}, \mathrm{DE}, \mathrm{EA}$. ABCDE
 is the pentagon required.

Because each of the angles $\mathrm{ACD}, \mathrm{CDA}$ is double of CAD , and are bisected by the straight lines CE, DB, the five angles $\mathrm{DAC}, \mathrm{ACE}, \mathrm{ECD}, \mathrm{CDB}, \mathrm{BDA}$ are equal to one another; but equal angles stand upon equal d circumferences; therefore $₫ 26.3$. the five circumferences $A B, B C, C D, D E, E A$ are equal to one

THE ELEMENTS

Boor IV. another: And equal circumferences are subtended by equale
e29.3. straight lines; therefore the five straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, $D E, E A$ are equal to one another. Wherefore the pentagon ABCDE is equilateral. It is also equiangular; because the circumference $A B$ is equal to the circumference $D E$: If to each be added $B C D$, the whole $A B C D$ is equal to the whole EDCB : And the angle AED stands on the circuinference ABCD , and the angle BAE on the circumference EDCB; therefore the angle BAE is equalf to the angle AED: For the same reason, each of the angles $\mathrm{ABC}, \mathrm{BCD}, \mathrm{CDE}$ is equal to the angle BAE, or AED: Therefore the pentagon ABCDE is equiangular; and it has been shown that it is equilateral. Wheretore, in the given circle, an equilateral and equiangular pentagon has been inscribed. Which was to be done.

PROP. XII. PROB.

ToO describe an equilateral and equiangular pentagon about a given circle.

Let $A B C D E$ be the given circle ; it is required to describe an equilateral and equiangular pentagon about the circle ABCDE.

Let the angles of a pentagon, inscribed in the circle, by the last proposition, be in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, so that the circumferences $A B, B C, C D, D E, E A$ are equal ${ }^{2}$; and through the points A, B, C, D, E, draw GH, HK, KL, LM, MG, touching ${ }^{\text {b }}$ the circle; take the centre F , and join $\mathrm{FB}, \mathrm{FK}, \mathrm{FC}$, FL, FD : And because the straight line KL touches the circle ABCDE in the point C , to which FC is drawn from the cen-
© 18.3. tre F, FC is perpendicular ${ }^{\mathrm{c}}$ to KL ; therefore each of the angles at C is a right angle : For the same reason, the angles at the points B, D are right angles: And because $F C K$ is a right angle, the square of FK is equald to the squares of FC, CK : For the same reason, the square of $F K$ is equal to the squares of FB, BK : Therefore the squares of FC, CK are equal to the squares of FB, BK, of which the square of FC is equal to the equare of FB ; the remaining square of CK is therefore equal ta

OF EUCLID.

the remaining square of BK , and the straight line CK equal to BK : And because FB is equal to FC , and FK common to the triangles $\mathrm{BFK}, \mathrm{CFK}$, the two BF, FK are equal to the two CF , FK ; and the base BK is equal to the base KC ; therefore the angle $B F K$ is equale to the angle $K F C$, and the angle $B K F$ to cs. i. FKC; wherefore the angle BFC is double of the angle KFC, and BKC double of FKC: For the same reason, the angle CFD is double of the angle CFL, and CLD double of CLF:And because the circumference BC is equal to the circumference CD , the angle BFC is equal ${ }^{f}$ to the angle CFD ; and BFC is double of the angle KFC, and CFD double of CFL; therefore the angle KHC , is equal to the angle CFL : and the right angle FCK is equal to the right angle FCL : Therefore, in the twotriangles FKC, FLC, there are two angles of one equal to two angles of the other, each toeach, and the side FC, which
 is adjacent to the equal angles in each, is common to both; therefore the other sides shall be equals to the other sides, and 820.2 . the third angle to the third angle : Therefore the straight line $K C$ is equal to CL, and the angle FKC to the angle FLC: And because KC is equal to CL, KL is double of KC : In the same manner it may be shown that HK is double of BK: And because BK is equal to KC , as was demonstrated, and that KL is double of KC , and HK double of BK, HK shall be equal to KL : In like manner, it may be shown that GH, G.M, ML are each of them equal to HK or KL: Therefore the pentagon GHKLMI is equilateral. It is also equiangular ; for, since the angle $F K C$ is equal to the angle FLC, and that the angle HK L is double of the angleFKC, and KLM double of FLC, as was before demonstrated, the angle HKL is equal to KLM: And in like manner it may be shown, that each of the angles KHG, HGMi, GML is equal to the angle HKL or KLM : Therefore the five angles GHK, HKL, KLM, LMG MGH being equal to one another, the pentagon GHKLM is equiangular: And it is equilateral, as was demonstrated; and it is described about the circle ABCDE. Which was to be done.

THE ELEMENTS

Book IV.

PROP. XIII. PROB.

ToO inscribe a circle in a given equilateral and equiangular pentagon.
Let ABCDE be the given equilateral and equiangular pentagon; it is required to inscribe a circle in the pentagon ABCDE.

Bisect ${ }^{2}$ the angles $\mathrm{BCD}, \mathrm{CDE}$ by the straight lines CF DF , and from the point F , in which they meet, draw the straight lines $\mathrm{FB}, \mathrm{FA}, \mathrm{FE}$: Therefore since BC is equal to CD , and CF common to the triangles $\mathrm{BCF}, \mathrm{DCF}$ the two sides BC, CF are equal to the two DC, CF; and the angle BCF is equal to
2. 1. the angle DCF ; therefore the base BF is equal ${ }^{\mathrm{b}}$ to the base FD , and the other angles to the other angles, to which the equal sides are opposite ; therefore the angle CBF is equal to the angle CDF : And because the angle CDE is double of CDF, and that CDE is equal to CBA, and CDF to CBF ; CBA is also double of the angle CBF; therefore the angle $A B F$ is equal to the angle CBF; wherefore the angle $A B C$ is bisected by the straight line BF : In the same manner it may be demonstrated, that the angles $\mathrm{BAE}, \mathrm{AED}$, are bisected by the straight lines $A F, F E:$ From the point F draw ${ }^{\text {c }}$ FG, FH, FK, FL, FM perpendiculars to the straight
 lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EA}$: And because the angle HCF is equal to KCF, and the right angle FHC equal to the right angle FKC ; in the triangles FHC, FKC there are two angles of one equal to two angles of the other, and the side FC , which is opposite to one of

- 26.1. the equal angles in each, is common to both; therefore the other sides shall be equald, each to each; wherefore the perpendicular FH is equal to the perpendicular FK : In the same manner it may be demonstrated; that FL, FM, FG are each of them equal to FH or FK : Therefore the five straight lines $\mathrm{FG}, \mathrm{FH}, \mathrm{FK}, \mathrm{FL}, \mathrm{FM}$ are equal to one another: Wherefore the circle described from the centre F , at the distance of one of these five, shall pass through the extremitics of
the other four, and touch the straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{Boor}$ IV. EA, because the angles at the points G, H, K, L, M are right angles ; and that a straight line drawn from the extremitt of the diameter of a circle at right angles to it, touches e16.3. the circle: Therefore each of the straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, DE, EA touches the circle: wherefore it is inscribed in the pentagon $A B C D E$. Which was to be done.

PROP. XIV. PROB.

To describe a circle about a given equilateral and
equiangular pentagon.
Let ABCDE be the given equilateral and equiangular pentagon : it is required to describe a circle about it.

Bisect ${ }^{2}$ the angles $B C D, C D E$ by the straight lines $C F, F D,=9.1$. and from the point F, in which they meet, draw the straight lines $\mathrm{FB}, \mathrm{FA}, \mathrm{FE}$ to the points B , A, E. It may be demonstrated, in the same manner as in the preceding proposition, that the angles CBA, BAE, AED are bisected by the straight lines FB, FA, FE: And because the angle BCD is equal to . the angle $C D E$, and that $F C D$ is the half of the angle $B C D$, and $C D F$, the half of CBE ; the angle FCD is
 equal to FDC; wherefore the side CF is equal ${ }^{\mathrm{b}}$ to the side FD : In like manner it may be de- b . 1 . monstrated that $\mathrm{FB}, \mathrm{FA}, \mathrm{FE}$, are each of them equal to FC or FD: Therefore the five straight lines FA, FB, FC, FD, FE are equal to one another; and the circle described from the centre F, at the distance of one of them, shall pass through the extremities of the other four, and be described about the equilateral and equiangular pentagon $A B C D E$. Which was to be done.

108
Boox IV.

THE ELEMENTS

PROP. XV. PROB.

Sce N.
To gon in a given circle.

Let $A B C D E F$ be the given circle; it is required to inscribe an equilateral and equiangular hexagon in it.

Find the centre G of the circle ABCDEF, and draw the diameter AGD; and from D as a centre, at the distance DG , describe the circle FGCH, join EG, CG, and produce them to the points B, F; and join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}, \mathrm{FA}$: The hexagon $A B C D E F$ is equilateral and equiangular.

Because G is the centre of the circle $\mathrm{ABCDEF}, \mathrm{CE}$ is equal to GD : And because D is the centre of the circle EGCH, DE is equal to $D G$; wherefore GE is equal to $E D$, and the triangle EGD is equilateral; and therefore its three angles EGD, GDE, DEG, are equal to one another, because the angles at the base of an isosceles triangle are equal ${ }^{2}$; and the three angles

- 5. 6.

-32. i.
c 13. 1.
15. 1.
e 26.3. of a triangle are equalb to two right angles; therefore the angle EGD is the third part of two right angles: In the same manner it may be demonstrated, that the angle DGC is also the third part of two right angles: And because the straight line GC makes with EB the adjacent angles EGC, CGB equale to two right angles; the remaining angle CGB is the third part of two right angles; therefore the angles $\mathrm{EGD}, \mathrm{DGC}, \mathrm{CGB}$ are equal to one another: And to these are equald the vertical opposite angles BGA, AGF, FGE: Therefore the six angles EGD, DGC, CGB, BGA, AGF, FGE, are equal to one another: But equal

$$
20.0
$$ angles stand upon equale circumfe-

 rences; therefore the six circumferences $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}, \mathrm{FA}$ are equal to one another :
²9.3. And equal circumferences are subtended by equal straight lines; therefore the six straight lines are equal to one another, and the hexagon ABCDEF is equilateral. It is also equiangular : for, since the circumference AF is equal to ED, to eacio of these add the circumference $A B C D$; therefore the whole circumference FABCD shall be equal to the whole EDCBA:

OF EUCLID:

And the angle FED stands upon the circumference FABCD, Boor IV. and the angle AFE upon EDCBA ; therefore the angle AFE is equal to FED: In the same manner it may be demonstrated that the other angles of the hexagon ABCDEF are each of them equal to the angle AFE or FED: Therefore the hexagon is equiangular; and it is equilateral, as was shown; and it is inscribed in the given circle ABCDEF. Which was to be done.

Cor. From this it is manifest, that the side of the hexagon is equal to the straight line from the centre, that is, to the semidiameter of the circle.

And if through the points A, B, C, D, E, F there be drawn straight lines touching the circle, an equilateral and equiangular hexagon shall be described about it, which may be demonstrated from what has been said of the pentagon; and like wise a circle may be inscribed in a given equilateral and equiangular hexagon, and circumscribed about it, by a method like to that used for the pentagon.

PROP. XVI. PROB.

To inscribe an equilateral and equiangular quin- \sec. . decagon in a given circle.

Let $A B C D$ be the given circle; it is required to inscribe an equilateral and equiangular quindecagon in the circle $A B C D$.

Let $A C$ be the side of an equilateral triangle inscribed ${ }^{2}$ in ${ }_{2}$ 2.4. the circle, and AB the side of an equilateral and equiangular pentagon inscribed ${ }^{b}$ in the same; therefore, of such equal parts $\cdot 11$. 4. as the whole circumference ABCDF contains fifteen, the circumference $A B C$, being the third part of the whole, contains five; and the circumference $A B$, which is the fifth part of the whole, contains three; therefore $B C$ their difference contains two of the same parts: Bi $\operatorname{sectc}^{c} \mathrm{BC}$ in E ; therefore BE, EC are, each of them, the fifteenth part of the whole circumference $\triangle B C D$: Therefore, if the straight lines BE,
 EC be drawn, and straight lines equal to them be placed decagon shall be inscribed in it. Which was to be done.

THE ELEMENTS OF EUCLID.

Boor IV. And, in the same manner as was done in the pentagon, if, through the points of division made by inscribing the quindecagon, straight lines be drawn touching the circle, an equilateral and equiangular quindecagon shall be described about it: And likewise, as in the pentagon, a circle may be inscribed in a given equilateral and equiangular quindecagon, and circumscribed about it."
[II]

THE

ELEMENTS

OF

EU CL 1 D.

BOOK V.

DEFINITIONS.

I.

A LESS magnitude is said to be a part of a greater mag- Boor V. nitude, when the less measures the greater; that is, $\xrightarrow{\sim}$ ' when the less is contained a certain number of times ex' actly in the greater.'
II.

A greater magnitude is said to be a multiple of a less, when the greater is measured by the less; that is, ' when the greater 'contains the less a certain number of times exactly.'
III.
'Ratio is a mutual relation of two magnitudes of the same See N . kind to one another, in respect of quantity.'
IV.

Magnitudes are said to have a ratio to one another, when the less can be multiplied so as to exceed the other.
V.

The first of four magnitudes is said to have the same ratio to the second, which the third has to the fourth, when any equimultiples whatsoever of the first and third being taken, and any equimultiples whatsoever of the second and fourth; if the multiple of the first be less than that of the second, the multiple of the third is also less than that of the fourth; or, if the multiple of the first be equal to that of the second, the multiple of the third is also equal to that of the fourth;

THE ELEMENTS.

Boor V. or, if the multiple of the first be greater than that of the second, the multiple of the third is also greater than that of the fourth.

VI.

Magnitudes which have the same ratio are called proportionals. N. B. ' When four magnitudes are proportionals, it is ' usually exprest by saying, the first is to the second, as the ' third to the fourth.'

VII.

When of the equimultiples of four magnitudes (taken as in the fifth definition), the multiple of the first is greater than that of the second, but the multiple of the third is not greater tban the multiple of the fourth ; then the first is said to have to the second a greater ratio than the third magnitude has to the fourth; and, on the contrary, the third is said to have to the fourth a less ratio than the first has to the second.

VIII.

Analogy, or proportion, is the similitude of ratios. IX.

Proportion consists in three terms at least. X.

See N . When three magnitudes are proportionals, the first is said to have to the third the duplicate ratio of that which it has to the second.

XI.

When four magnitudes are continual proportionals, the first is said to have to the fourth the triplicate ratio of that which it has to the second, and so on, qnadruplicate, \&\%c. increasing the denomination still by unity, in any number of propor-
, tionals.
Definition A, to wit, of compound ratio.
When there are any number of magnitudes of the same kind, the first is said to have to the last of them the ratio compounded of the ratio which the first has to the second, and of the ratio which the second has to the third, and of the ratio which the third has to the fourth, and so on unto the last magnitude.
For example, if A, B, C, D, be four magnitudes of the same kind, the first A is said to have to the last D the ratio compounded of the ratio of A to B, and the ratio of B to C, and of the ratio C to D, or, the ratio of A to D is said to be compounded of the ratios of A to B, B to C, and C to D :

OF EUCLID.

And if A has to B the same ratio which E has to F; and B Book V. to C, the same ratio that G has to H; and C to D, the same that K has to L ; then, by this definition, A is said to have to D the ratid compounded, of ratios which are the same with the ratios of E to F, G to H , and K to L : And the same thing is to be understood when it is more briefly expressed, by saying, A has to D the ratio compounded of the ratios of E to F, G to H, and K to L.
In like manner, the same things being supposed, if M has to N the same ratio which A has to D ; then, for shortness sake, M is said to have to N, the ratio compounded of the ratios of E to F, G to H, and K to L.
XII.

In proportionals, the antecedent terms are called homologous to one another, as also the consequents to one another.

- Giometers make use of the following technical words to sig' nify certain ways of changing either the order or magni' tude of proportionals, so as that they continue still to be ' proportionals.'

XIII.

Permutando, or alternando, by permutation, or alternately. This word is used when there are four proportionals, and it See N. is inferred, that the first has the same ratio to the third, which the second has to the fourth; or that the first is to the third, as the second to the fourth: As is shewn in the 16th prop. of this 5 th book.
XIV.

Invertendo, by inversion: When there are four proportionals, and it is inferred, that the second is to the first, as the fourth to the third. Prop. B. Book 5 .
XV.

Componendo, by composition ; when there are four proportionals, and it is inferred, that the first, together with the second, is to the second, as the third, together with the fourth, is to the fourth. 18th Prop. Book 5.
XVI.

Dividendo, by division; when there are four proportionals, and it is inferred, that the excess of the first above the second, is to the second, as the excess of the third above the fourth, is to the fourth. 17th Prop. Book 5.
XVII.
Convertendo, by conversion; when there are four proportionals, and it is inferred, that the first is to its excess above the

THE ELEMENTS

Book V. - second, as the third to its excess above the fourth. Prop. E. Book 5.

XVIII.

Ex æquali (sc. distantia); or ex æquo, from equality of distance; when there is any number of magnitudes more than two, and as many others, so that they are proportionals when taken two and two of each rank, and it is inferred, that the first is to the last of the first rank of magnitudes, as the first is to the last of the others: ' Of this there are the two fol' lowing kinds, which arise from the different order in which ' the magnitudes are taken, two and two.'.
XIX.

Ex æquali, from equality. This term is used simply by itself, when the first magnitude is to the second of the first rank, as the first to the second of the other rank; and as the second is to the third of the first rank, so is the second to the third of the other; and so on in order, and the inference is as mentioned in the preceding definition; whence this is called ordinate proportion. It is demonstrated in 22nd Prop. Book 5. XX.

Ex æquali, in proportione perturbata, seu inordinata, from equality, in perturbate or disorderly proportion*. This term is used when the first magnitude is to the second of the first rank, as the last but one is to the last of the second rank; and as the second is to the third of the first rank, so is the last but two to the last but one of the second rank; and as the third is to the fourth of the first rank, so is the third from the last to the last but two of the second rank; and so on in a cross order: And the inference is as in the 18 th definition. It is demonstrated in the 23 d. Prop. of Book 5 .

A XIOMS.

Wouimultiples
equal to one another.
I.

Lquimultiples of the same, or of equal magnitudes, are

II. Those

[^3]
OF EUCLID.

II.

Those magnitudes of which the same, or equal magnitudes, are equimultiples, are equal to one another.
III.
multiple of a greater magnitude is greater than the same multiple of a less.
IV.
hat magnitude of which a multiple is greater than the same multiple of another, is greater than that other magnitude.

PROP. I. THEOR.

F any number of magnitudes be equimultiples of many, each of each; what multiple soever any e of them is of its part, the same multiple shall all first magnitudes be of all the other.

Let any number of magnitudes $A B, C D$ be equimultiples as many others E, F, each of each; whatsoever multiple is of E, the same multiple shall $A B$ and $C D$ together be and F together.
Because AB is the same multiple of E that CD is of F, as y magnitudes as are in $A B$ equal to E, so many are there D equal to F. Divide $A B$ into magnitudes

11 to E, viz. $A G, G B$; and $C D$ into $C H$, equal each of them to F : The number efore of the magnitudes CH, HD shall be 1 to the number of the others AG, GB : because $A G$ is equal to E, and $C H$ to F, jefore AG and CH together are equal to ${ }^{2} \mathrm{E}$

F together: Eor the same reason, because Fis equal to E, and $H D$ to $F ; G B$ and $H D$ her are equal to E and F together. Whereeas many magnitudes as are in AB equal so many are there in $A B, C D$ together to E and F together. Therefore, whatr multiple $A B$ is of E, the same mulis $A B$ and $C D$ together of E and F to- D r.

Therefore, if any magnitudes, how many soever, be equiples of as many, each of each, whatsoever multiple any 10 f them is of its part, the same multiple shall all the first agitudes be of all the other: ' For the same demonstration

Boox V. 'holds in any number of maghtudes, which was here applied 'to two:' Q. E. D.

PROP. II. THEOR.

IF the first magnitude be the same multiple of the second that the third is of the fourth, and the fiftl the same multiple of the second that the sixth is o athe fourth; then shall the first together with th fifth be: the same multiple of the second, that th third together with the sixth is of the fourth.

Let $A B$ the first, be the same multiple of C the second, thi DE the third is of F the fourth; and BG the fifth, the san multiple of C the second, that EH the sixth is of F the fourth: , Then is AG the first, together with the fifth, the same multiple of C the second, that 1 DH the third, together with the sixth, is of F the fourth.

Because $A B$ is the same multiple of C , that DE is of F ; there are as many magnitudes in AB equal to C , as there are in DE equal to F : In like
 manner, as many as there are in BG equal to C , so many there in EH equal to F : As many, then, as are in the wh AG equal to C, so many are there in the whole DH equa F ; therefore $\Lambda \mathrm{G}$ is the same multiple of C , that DH is 0 : that is, $\Lambda \mathrm{G}$ the first and fifth together, is the same multiple of the second C , that DH the third and sixth together is of the fourth F. If therefore, the first be the same multiple, \&c. Q. E. D.

Cor. 'From this it is plain, that, if any ' number of magnitudes $\mathrm{AB}, \mathrm{BG}, \mathrm{GH}$, - be multiples of another C ; and as many - $\mathrm{DE}, \mathrm{EK}, \mathrm{KL}$ be the same multiples of - F, each of each; the whole of the first, - viz. AH, is the same multinle of C, 'that the whole of the last, viz. DL_{2} is ' of F.'

PROP. III. THEOR.

IF the first be the same multiple of the second, which the third is of the fourth; and if of the first and third there be taken equimultiples, these shall be equimultiples, the one of the second, and the other of the fourth.

Let A the first, be the same multiple of B the second, that C the third is of D the fourth; and of A, C let the equimultiples EF, GH be taken: Then EF is the same multiple of B , that GH is of D .

Because EF is the same multiple of A, that GH is of C , there are as many magnitudes in EF equal to A, as are in $G H$ equal to C : Let EF be divided into the magnitudes $E K, K F$, each equal to A, and GH into GL, LH, each equal to C : The number therefore of the magnitudes EK, KF, siall be equal to the number of the others GL, LH: And because A is the same multiple of B, that C is of D, and that EK is equal to A , and GL to C; therefore EK is the same multiple
 of B, that GL is of D : For the same reason, KF is the same multiple of B , that LH is of D; and so, if there be more parts in EF, GH equal to A, C : Because, therefore, the first EK is the same multiple of the second B, which the third GL is of the fourth D, and that the fifth KF is the same multiple of the second B , which the sixth LH is of the fourth D ; EF the first together with the fifth, is the same multiple: of the second B, which GH the $=2.5$. third, together with the sixth, is of the fourth D. If. therefore, the first, \&c. Q. E. D.

is

Book V.

PROP. IV. THEOR.

See N.
I THE ELEMENTS to the second which the third has to the fourth; then any equimultiples whatever of the first and third shall have the same ratio to any equimultiples of the second and fourth, viz. 'the equimultiple of 'the first shall have the same ratio to that of the 'second, which the equimultiple of the third has to ' that of the fourth.'
Let A the first, have to B the second, the same ratio which the third C has to the fourth D ; and of A and C let there be taken any equimultiples whatever E, F; and of B and D any equimultiples whatever G, H : Then E has the same ratio to G, which F has to H .

Take of E and F any equimultuples whatever K, L, and of G, H , any equimultiples whatever M , N : Then, because E is the same multiple of A, that F is of C; and of E and F have been taken equimultiples K, L; therefore K

* 3.3. is the same multiple of A, that L
is of $\mathrm{C}^{\text {a }}$: For the same reason, M $\left.\left.\right|_{K}\right|_{\mathbf{E}}$ is the same multiple of B, that N is of $\mathrm{D}:$ And because, as A is to
- Hypoth. B, so is C to D^{b}, and of A and C have been taken certain equimultiples K, L : and of B and D have been taken certain equimultuples M, N : if therefore K be greater than M, L is greater than N : and if equal, equal; if less,
c 5 . def. 5. less. And K, L, are any equimultiples whatever of E, F; and M, N any whatever of $\mathrm{G}, \mathrm{H}:$ As therefore E is to G, so is ${ }^{c} F$ to H. Therefore, if the first, \&c. Q. E. D.
See N. Cor. Likewise, if the first has the same ratio to the second, which the third has to the fourth, then also any equimultiples

OF EUCLID.

whatever of the first and third have the same ratio to the se- Boox V . cond and fourth: And in like manner, the first and the third have the same ratio to any equimultiples whatever of the second and fourth.

Let A the first, have to B the second, the same ratio which the third C has to the fourth D , and of A and C let E and F be any equimultiples whatever ; then E is to B, as F to D.

Take of E, F any equimultiples whatever K, L, and of B, D any equimultiples whatever G, H; then it may be demonstrated, as before, that K is the same multiple of A , that L is of C : And because A is to B, as C is to D, and of A and C certain equimultiples have been taken, viz. K and L ; and of B and D certain equimultiples G, H; therefore, if K be greater than G, L is greater than H; and if equal, equal; ifless, less : ${ }^{\text {c }} 5$. def. 5. And, K, L are any equimultiples of E, F, and G, H any whatever of B, D; as therefore E is to B, so is F to D : And in the same way the other case is demonstrated.

PROP. V. THEOR.

IF one magnitude be the same multiple of another, see N. which a magnitude taken from the first is of a magnitude taken from the other; the remainder shall be the same multiple of the remainder, that the whole is of the whole.

Let the magnitude AB be the same multiple of $C D$, that $\AA E$ taken from the first, is of $C F$ taken from the other ; the remainder EB shall be the same multiple of the remainder FD, that the whole AB is of the whole CD .

Take AG the same multiple of FD, that AE is of CF : therefore AE is ${ }^{2}$ the same multiple of CF , that EG is of CD : But AE , by the hypothesis, is the same multiple of CF , that $A B$ is of $C D$: Therefore EG is the same multiple of $C D$ that $A B$ is of $C D$: wherefore $E G$ is equal to $A B^{b}$. Take from them the common magnitude $A E$; the remainder $A G$ is equal to the remainder EB. Wherefore, since AE is
 the same multiple of CF, that AG is of FD, and that $A G$ is equal to $E B$; therefore $A E$ is the same multiple of $C F$, that $E B$ is of $F D$: But $A E$ is the same multiple of $C F$,

THE ELEMENTS

Boox V.
$\xrightarrow{\infty}$ that $A B$ is of $C D$; therefore $E B$ is the same multiple of $F D$,
that $A B$ is of $C D$. Therefore, if any magnitude, \&c. Q.E.D.

PROP. VI. THEOR.
Sce N. IF two magnitudes be equimultiples of two others, and if equimultiples of these be taken from the first two, the remainders are either equal to thesc others, or equinultiples of them.

Let the two magnitudes $A B, C D$ be equimultiples of the two E, F, and AG, CH taken from the first two be equimultiples of the same E, F; the remainders GB, HD are either equal to E, F, or equimultiples of them.

First, let GB be equal to E; $H D$ is
equal to F : Make CK equal to F; and bebause $\Lambda \mathrm{G}$ is the same multiple of E , that CH is of F , and that GB is equal to E , and CK to F ; therefore AB is the same multiple of E, that KH is of F . But AB , by the hyporhesis, is the same multiple of E that CD is of F ; therefore KH is the same multiple of F, that $C D$ is of F;
2 Ax. 5. wherefore KH is equal to CD^{2} : Take
 away the common magnitude CH , then the remainder KC is equal to the remainder HD: But KC is equal to F ; HD therefore is equal to F .

But let GB be a multiple of E; then HD is the same multiple of F : Make CK the same multiple of F , that GB is of $E: \Lambda$ nd because ΛG is the same multiple of E, that $C H$ is of F; and $G B$ the same multiple of E, that $C K$ is of F; therefore AB is the same multiple of E, that $K H$ is of F^{b} : But $A B$ is the same multiple of E, that CD is of F ; therefore KH is the same multiple of F , that CD is of it; Wherefore KH is equal to CD^{3} : Take away CH from both; therefore the remainder KC is equal to the remainder
 HD : And because GB is the same multiple of E , that KC is of F , and that KC is equal to HD ; therefore HD is the same multiple of F , that GB is of E . If therefore two magnitudes, \&c. Q. E. D.

OF EUCLID.

PROP. A. THEOR.

IF the first of four magnitudes has to the second, See N. the-same ratio which the third has to the fourth; then, if the first be greater than the second, the third is also greater than the fourth ; and if equal, equal ; it less, less.

Take any equimultiples of each of them, as the doubles of each ; then, by def. 5 th of this book, if the double of the first be greater than the double of the second, the double of third is greater than the double of the fourth : but, if the first be greater than the second, the double of the first is greater than the double of the second; wherefore also the double of the third is greater than the double of the fourth; therefore the third is greater than the fourth: In like manner, if the first be equal to the second, or less than it, the third can be proved to be equal to the fourth, or less than it. Therefore, if the first, \&'c. Q. E. D.

PROP. B. THEOR.

IF four magnitudes are proportionals, they are pro- see N . portionals also when taken inversely.
If the magnitude A be to B, as C is to D, then also inversely B is to A, as D to C.
Take of B and D any equimultiples whatever E and F; and of A and C any equimultiples whatever G and H . First let E be greater than G, then G is less than E; and because A is to B, as C is to D, and of A and C , the first and third, G and H are equimultiples; and of B and D , the second and fourth, E and F are equimultiples; and that G is less than E, H is also :less than F ; that is, F is greater than H ; if therefore E be greater than G, F is greater than H : In like manner, if E be equal to G, F may be shown to be equal to H ; and if less, less ; and E, F, are any equimultiples whatever of B and D, and G, H any whatever of A and C ; therefore, as B

THE ELEMENTS

Boos V. is to A, so is D to C. If, then, four magnitudes, \&sc.
Q. E. D.

PROP. C. THEOR.

Sex. IF the first be the same multiple of the second, or the same part of it, that the third is of the fourth; the firstis to the second, as the third is to the fourth.

Let the first A be the same multiple of B the second, that C the third is of the fourth D : A is to B as C is to D.

Take of A and C any equimultiples whatever E and F; and of B and D any equimultiples whatever G and H : Then, because A is the same multiple of B that C is of D ; and that E is the same multiple of A , that
 F is of $C: E$ is the same multiple of B, that
23.5. F is of D^{3}; therefore E and F are the same multiples of B and D : But G and H are equimultiples of B and D : therefore, if E be a greater multiple of B than G is, F is a greater multiple of D than H is of D; that is, if E be greater than G, F is greater than H : In like manner, if E be equal to G, or less, F is equal to H, or less than it. But E, F are equimultiples, any whatever, of A, C, and G, H, any equimultiples whatever of B ,
-5. def. 5. D. Therefore A is to B, as C is to D^{b}.

Next, Let the first A be the same part of the second B, that the third C is of the fourth $D: A$ is to B, as C is to D : For B is the same multiple of $\cdot A$, that D is of C : wherefore by the preceding case, B is to A, as D is to C; and in-
-B.5. versely ${ }^{\text {c }} A$ is to B as C is to D : Therefore, if the first be the same multiple, \&c. Q. E. D.

OF EUCLID.

PROP. D. THEOR.

IF the first be to the second as the third to the See N . fourth, and if the first be a multiple or part of the second; the third is the same multiple, or the same part of the fourth.

Let A be to B, as C is to D; and first let A be a multiple of $B ; C$ is the same multiple of D.

Take E equal to A, and whatever multiple A or E is of B, make F the same multiple of D : Then, because A is to B, as C is to D; and of B the second, and D the fourth equimultiples have been taken E and F; A is to E, as C to F^{2} : But A is eçual to E, therefore C is equal to $F{ }^{b}$: and F is the same multiple of D, that A is of B. Wherefore C is the same multiple of D, that A is of B .

Next, Let the first A' be a part of the second B ; C the third is the same part of the fourth D.

Because A is to B, as C is to D; then, inversely, B is ${ }^{c}$ to A, as D to C : But A is a part of B, therefore B is a multiple of A; and, by the preceding case, D is the same multiple of C; that is, C is the same part of D, that A is of B: Therefore, if the first, \&ic. Q.E.D.

PROP. VII. THEOR.

Equal magnitudes have the same ratio to the samie magnitude; and the same has the same ratio to equal màgnitudes.

Let A and B be equal magnitudes, and C any other. A and B have each of them the same ratio to C, and C has the same ratio to each of the magnitudes A and B.
Take of A and B any equimultiples whatever D and E, and

THE ELEMENTS

Book V.
of C any multiple whatever F : 'Then, because D is the same
21. Ax. 5. multiple of A, that E is of B, and that A is equal to $B ; D$ is ${ }^{2}$ equal to E : Therefore, if D be greater than F, E is greater than F; and if equal, equal ; if less, less: And D, E are any equimultiples of A, B, and F is any mul-

- 5 def. 5. tiple of C. Therefore ${ }^{\mathrm{b}}$, as \mathbf{A} is to C , so is B to C.

Likewise C has the same ratio to A, that it D A has to B: For, having made the same construction, D may in like manner be shown equal to E : Therefore, if F be greater than D, it is likewise greater than E; and if equal, equal ; if less, less: And F is any multiple whatever of C, and D, E are any equimultiples whatever of A, B. Therefore C is to A, as C is to B^{b}. Therefore, equal magnitudes, \&c. Q. E. D.

PROP. VIII. THEOR.

See N. OF unequal magnitudes, the greater has a greater ratio to the same than the less has; and the same magnitude has a greater ratio to the less, than it has to the greater.

Let $A B, B C$ be unequal magnitudes, of which $A B$ is the greater, and let D be any magnitude whatever: AB has a greater ratio to D than $B C$ to D : And D has a greater ratio to $B C$ than unto $A B$.

If the magnitude which is not the greater of the two $A C, C B$, be not less than D , take EF, FG, the doubles of AC, CB, as in Fig. I. But if that which is not the greater of the two $A C, C B$ be less than D (as in Fig 2 and 3.) this magnitude can be multiplied, so as to become greater than D, whether it be AC , or CB . Let it be multiplied, until it become greater than D, and let the other be multiplied as often; and let EF be the multiple thus taken of AC, and FG the same multiple of CB: Therefore EF and FG are each of them greater than

D: And

OF EUCLID.

D: And in every one of the cases, take H the double of D, K its triple, and so on, till the multiple of D be that which first becomes greater than FG : Let L be that multiple of D which is first greater than FG , and K the multiple of D which is next less than L.

Then, because L is the multiple of D, which is the first that becomes greater than $F G$, the next preceding multiple K is not greater than $E G$; that: is, $F G$ is not less than K : And since $E F$ is the same multiple of $A C$, that $F G$ is of $C B ; F G$ is the same multiple of CB ; that EG is of AB^{2}; wherefore EG and $F G$ are equimultiples of $A B$ and $C B$: And it was shown, that FG wasnotless than K, and, by the construeton, EF , is greater than D ; therefore the whole EG is greaterthanKand D together: But K, together with D , is equal to L; therefore EG is greater than L; but FG is not greater than L ; and $E G, F G$ are equimultiples of AB, BC, and L is a multiple of D ; therefore ${ }^{\mathrm{b}} \mathrm{AB}$ has to D a greater ratio than BC has to D .

Also D has to BC a greater ratio than it has to $A B$: For, having made the same construction, it may be shown, in like manner,

Fig. 3.

8\%. def. 3.
 that L is greater than FG, but that it is not greater than EG: and L is a multiple of D; and $F G$, EG are equimultiples of CB, AB; therefore D has to CB a greater ratio ${ }^{\text {b }}$ than it has to AB .. Wherefore, -f unequal magnitudes, \&ic. Q. E. D.

Book V.

PROP. IX. THEOR.

See N. MIanitudes which have the same ratio to the same magnitude are equal to one another; and those to which the same magnitude has the same ratio are equal to one another.

Let A, B have each of them the same ratio to $C: A$ is equal to B : for, if they are not equal, one of them is greater than the other; let A be the greater; then, by what was shownin the preceding proposition, there are some equimultiples of A and B, and some multiple of C such, that the multiple of A is greater than the multiple of C , but the multiple of B is not greater than that of C. Let such multiples be taken, and let D, E, be the equimultiples of A, B, and F the multiple of C, so that D may be greater than F, and E not greater than F : But, beeause A is to C, as B is to C, and of A, B, are taken equimultiples D, E, and of C is taken a multiple F ; and that D is greater than F ; E shall also be greater
25. def. 5. than F^{2}; but E is not greater than $F ; A \mid$
which is impossible; A therefore and B are not unequal ; that is, they are equal.

Next, let C have the same ratio to each of the magnitudes A and B ; A is equal to B : For, if they are not, one of them is -greater than the other; let A be the greater ; therefore, as was shown in Prop. 8th, there is some multiple F of C , and some
 equimultiples E and D , of B and A such, that F is greater than E, and not greater than D; but because C is to B, as C is to A, and that F, the multiple of the first, is greater than E, the multiple of the second; F the multiple of the third, is greater than D , the multiple of the fourth ${ }^{2}$: But F is not greater than D, which is impossible. Therefore A is equal to B. Wherefore, magnitudes which, \&ic. Q. E. D.

OF EUCLID.

PROP. X. THEOR.
That magnitude which has a greater ratio than see x . another has unto the same magnitude, is the greater of the two: And that magnitude to which the same has a greater ratio than it has unto another magnitude is the lesser of the two.

Let A have to C a greater ratio than B has to C; A is greater than B : For, because A has a greater ratio to C, than B has to C , there are ${ }^{2}$ some equimultiples of A and B , and some ${ }^{2} 7$. def. 5. multiple of C such, that the multiple of A is greater than the multiple of C , but the multiple of B is not greater than it : Let them be taken, and let D, E be equir ultiples of A, B, and F a multiple of C such, that D is greater than F , but E is not greater than F : Therefore D is greater than E : And, because D and E are equimultiples of A and B, and D is greater A than E ; therefore A is ${ }^{\mathrm{b}}$ greater than B .
Next, let C have a greater ratio to B than it has to $A ; B$ is less than $A:$ For 2 there is some multiple F of C , and some equimultiples E and D of B and A such, that F is greater than E, but is not greater than $D: E$ therefore is less than D; and
 because E and D are-equimultiples of B and A, therefore B is ${ }^{b}$ less than A. That magnitude, therefore, \&cc. Q. E. D.

PROP. XI. THEOR.

Ratios that are the same to the same ratio, are the same to one another.

Let A be to B as C is to D; and as C to D, so let E be to F; A is to B, as E to F.
Take of $\mathrm{A}, \mathrm{C}, \mathrm{E}$, any equimultiples whatever $\mathrm{G}, \mathrm{H}, \mathrm{K}$; and of B, D, F, any equimultiples whatever L, M, N. Therefore, since A is to B, as C to D, and G, H are taken equmultiples of A, C,

'IHE ELEMEN'TS

ook V. A, C, and L, M, of B, D; if G be greater than L, H is greater a o. def. 5. than M ; and if equal, equal ; and if less, less². Again, because C is to D, as E is to F, and H, K are taken equimultiples of C, E; and M, N, of D, F; if H be greater than M, K is greater than N ; and if equal, equal ; and if less, less: But if

G be greater than L, it has been shown that H is greater than M , and if equal, equal; and if less, less; therefore, if G be greater than L, K is greater than N; and if equal, equal ; and if less, less: And G, K are any equimultiples whatever of A, E ; and L, N any whatever of B, F : Therefore, as A is to B , so is E to F^{3}. Wherefore, ratios that, \&cc. Q. E. D.

PROP. XII. THEOR.

I_{F} F any number of magnitudes be proportionals, as one of the antecedents is to its consequent, so shall all the antecedents taken together be to all the consequents.

Let any number of magnitudes A, B, C, D, E, F, be proportionals ; that is, as A is to B, so C to D, and E to F : As A is to B, so shall A, C, E together be to B, D, F together.

Take of A, C, E any equimultiples whatever $\mathrm{G}, \mathrm{H}, \mathrm{K}$;

H

T —————
and of B, D, F any equimultiples whatever L, M, N : Then, because A is to B, as C is to D, and as E to F; and that $G, \underset{K}{H}$,
K are equimultiples of A, C, E, and L, M, N, equimultiples of Boox V. B, D, F; if G be greater than L, H is greater than M, and $K=5$. Def, 5 . greater than N ; and if equal, equal ; and if less, less ${ }^{2}$. Wherefore, if G be greater than L , then $\mathrm{G}, \mathrm{H}, \mathrm{K}$ together are greater than L, M, N together; and if equal, equal ; and if less, less. And G, and G, H, K, together are any equimultiples of A, and A, C, E together; because if there be any number of magnitudes equimultiples of as many, each of each, whatever multiple of one of them is of its part, the same multiple is the whole of the whole ${ }^{\mathrm{b}}$: For the same reason L , and $\mathrm{L}, \mathrm{M}, \mathrm{N}=1.5$. are any equimultiples of B, and $B, D, F:$ As therefore A is to B, so are A, C, E, together to B, D, F together. Wherefore, if any number, \&c. Q. E. D.

PROP. XIII. THEOR.

If the first has to the second the same ratio which See N . the third has to the fourth, but the third to the fourth a greater ratio than the fifth has to the sixth; the first shall also have to the second a greater ratio than the fifth has to the sixth.

Let A the first, have the same ratio to B the second, which C the third, has to D the fourth, but C the third, to D the fourth, a greater ratio than E the fifth, to F the sixth: Also the first A shall have to the second B a greater ratio than the fifth E to the sixth F.

Because C has a greater ratio to D , than E to F , there are some equimultiples of C and E, and some of D and F such, that the multiple of C is greater than the multiple of D, but

the multiple of \mathbf{E} is not greater than the multiple of F^{2} : Let ${ }^{3}$. def. 5 . such bè taken, and of C, E let G, H be equimultiples, and K , L equimultiples of D, F, so that G be greater than K, but H not greater than L ; and whatever multiple G is of C , take M he same multiple of A ; and whatever multiple K is of D , take N the same multiple of B : Then, because A is to B, as C to $\mathrm{K} \quad \mathrm{D}$, and

Book V. D, and of A and C, M and G are equimultiples: And of B and
-5.Def.5. D, N and K are equimultiples; if M be greater than N, G is greater than K; and if equal, equal ; and if less, less ${ }^{\text {b }}$; but G is greater than K , therefore M is greater than N : But H is not greater than L; and M, H are equimuitiples of A, E; and N, Lequimultiples of B, F : Therefore A has a greater ratio to B,
${ }^{\text {c 7 }}$. Def. 5. than E has to F^{c}. Wherefore, if the first, \&cc. Q.E. D.
Cor. Andif the first have a greater ratio to the second, than the third has to the fourth, but the third the same ratio to the fourth, which the fifth has to the sixth; it may be demonstrated, in like manner, that the first has a greater ratio to the second, than the fifth has to the sixth.

PROP. XIV. THEOR.

See N. IF the first has to the second, the same ratio which the third has to the fourth; then, if the first be greater than the third, the second shall be greater than the fourth ; and if equal, equal; and if less, less.

Let the first A have to the second B, the same ratio which the third C , has to the fourth D ; if A be greater than C, B is greater than D .

Because A is greater than C, and B is any other magnitude,
28. 5. A has to B a greater ratio than C to B^{3} : But, as A is to B, so

-13.5.
c 10.5.
-9. 5.
is C to D; therefore also C has to D a greater ratio than C has to $B^{\text {b }}$. But of two magnitudes, that to which the same has the greater ratio is the lesserc. Wherefore D is less than B ; that is, B is greater than D .

Secondly, if A be equal to C, B is equal to D : For A is to B, as C, that is A, to $D: B$ therefore is equal to D^{d}.
Thirdly, if A be less than C, B shall beless than D: For C is greater than A, and because C is to D, as A is to B, D is greater than B, by the first case ; wherefore B is less than D. Therefore, if the first, \&ic. Q. E. D.

OFEUCLID.

PROP. XV. THEOR.

Magnitudes have the same ratio to one another which their equimultiples have.

Let AB be the same multiple of C , that DE is of $\mathrm{F} ; \mathrm{C}$ is te F, as $A B$ to $D E$.

Because $A B$ is the same multiple of C, that $D E$ is of F; there are as many magnitudes in $A B$ equal to C, as there are in $D E$ equal to F : Let $A B$ be divided into magnitudes, each equal to C, viz. $\mathrm{AG}, \mathrm{GH}, \mathrm{HB}$; and DE into magnitudes, each equal to F , viz. $\mathrm{DK}, \mathrm{KL}, \mathrm{LE}$: Then the number of the first $\mathrm{AG}, \mathrm{GH}, \mathrm{HB}$, shall be equal to the number of the last DK , KL, LE: And because AG, GH, HB are all equal, and that DK, KL, LE, are also equal to one another; therefore $A G$ is to DK, as GH to KL, and as HB to LE ${ }^{2}$:
 And as one of the antecedents to its consequent, so are all the antecedents together to all the consequents together ${ }^{\text {b }}$; wherefore, as AG is to DK , so is AB to DE : But ${ }^{\circ}$ 12. 5 . AG is equal to C, and DK to F: Therefore, as C is to F, so is $A B$ to $D E$. Therefore magnitudes, \&c. Q.E.D.

PROP. XVI. THEOR.

I
F four magnitudes of the same kind be proportionals, they shall also be proportionals when taken alternately.

Let the four magnitudes $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, be proportionals, viz. as A to B, so C to D : They shall also be proportionals when taken alternately ; that is, A is to C, as B to D.

Take of A and B any equimultiples whatever E and F; and of C and D take any equimultiples whatever G and H : and
$\underbrace{\text { Boox } V}$. because E is the same multiple of A, that F is of B, and that
c15.5. magnitudes have the same ratio to one another which their equimultiples have ; therefore A is to B, as E is to F : But as A is to B, so is C to
-11. 5. D: Wherefore as C is to D, so ${ }^{b}$ is E to F: Again, because G, H are equimul-- tiples of C, D, as C

 is to D, so is G to

D H^{2}; but as C is to D, so is E to F. Wherefore, as E is to F, so is G to H^{b}. But when four magnitudes are proportionals, if the first be greater than the third, the second shall be greater than the fourth; and
c14.5. if equal, equal ; if less, lessc. Wherefore, if E be greater than G, F likewise is greater than H : and if equal, equal ; if less, less : And E, F are any equimultiples whatever of A, B; and
G, H any whatever of C, D. Therefore A is to C as B to
*5. Def. 5. Dd. If then four magnitudes, \&ic. Q. E. D.

PROP. XVII. THEOR.

See N. IF'magnitudes, 'taken jointly,' be proportionals, they shall also be proportionals when taken separately; that is, if two magnitudes together have to one of them the same ratio which two others have to one of these; the remaining one of the first two shall have to the other the same ratio which the remaining one of the last two has to the other of these.

Let $\mathrm{AB}, \mathrm{BE}, \mathrm{CD}, \mathrm{DF}$ be the magnitudes taken jointly which are proportionals'; that is, as $A B$ to $B E$, so is $C D$ to DF ; they shall also be proportionals taken separately, viz. as AE to EB, so CF to FD.

Take of AE, EB, CF, FD any equimultiples whatever GH , $\mathrm{HK}, \mathrm{LM}, \mathrm{MN}$; and again, of EB, FD take any equimultiples whatever KX, NP: And because GH is the same multiple of AE , that HK is of EB , wherefore GH is the same multiple ${ }^{\text {a }}$ of $A E$, that GK is of $A B$: But GH is the same multiple of $A E$, that $L M$ is of $C F$; wherefore $G K$ is the same multiple of $A B$,
that LM is of CF. Again, because LM is the same multiple of Boor $\mathrm{F}^{\text {. }}$; CF , that MN is of FD ; therefore LM is the same multiple ${ }_{2}^{2}=1.5$. of CF, than LN is of CD: But LM was shown to be the same multuple of CF, that GK is of $A B$; GK therefore is the same muitiple of $A B$, that LN is of CD ; that is, GK, LN are equimultiples of AB, CD. Next, because HK is the same multiple of EB, that MN is of FD; and that KX is also the same multiple of EB , that NP is of FD ; therefore HX is the same multiple bof EB, that MP is of FD. And because $A B$ is to $B E$, as $C D$ is to $D F$, and that of $A B$ and $C D, G K$ and $L N$ are equimultiples, and of EB and FD, HX and MP are equimultiples ; if GK be greater than HX , then LN is greater than MP; and if equal, equal ; and if less, less ${ }^{\text {; }}$; But if GH be greater than KX , by adding the common part HK to both, GK is greater than HX ; wherefore also LN is greater than MP: and by taking away MN from both, $\cdot \mathrm{LM}$ is greater than NP: Therefore, if GH be greater than KX, LM is greater than NP. In like manner it may
 be demonstrated, that if GH be equal to KX, LM likewise is equal to NP; and if less, less: And GH, LM are any equimultiples whatever of AE, CF, and KX, NP are any whatever of $E B, F D$. Therefore, as $A E$ is to $E B_{2}$ so is $C F$ to FD. If then magnitudes, \&c. Q. E. D.

PROP. XVIII. THEOR.

IF magnitudes, taken separately, be proportionals, See N they shall also be proportionals when taken jointly, that is, if the first be to the second, as the third to the fourth, the first and second together shall be to the second, as the third and fourth together to the fourth.

Let $\mathrm{AE}, \mathrm{EB}, \mathrm{CF}, \mathrm{FD}$ be proportionals; that is, as AE to $E B$, so is CF to $F D$; they shall also be proportionals when. taken jointly ; that is, as AB to BE , so CD to DF .

Take of $\mathrm{AB}, \mathrm{BE}, \mathrm{CD}, \mathrm{DF}$ any equimultiples whatever $\mathrm{GH}, \mathrm{HK}, \mathrm{LM}, \mathrm{MN}$: and a arain, of BE, DF, take any whatever equimultiples KO , NP: And because KO , NP are

Book V. equimultiples of BE, DF; and that KH, NM are equimultiples likewise of BE, DF, if KO , the multiple of BE , be greater than KH , which is a multiple of the same BE, NP, likewise the multiple of DF , shall be greater than MN , the multiple of the same DF; and if KO be equal to KH, NP shall be equal to NM ; and if less, less:

First, Let KO not be greater than KH , therefore NP is not greater than NM: And because GH, HK, are equimultiples of AB, BE, and that AB is greater than BE , therefore GH is
2 5. Ax. 5. greater than HK ; but KO is not greater than KH , wherefore GH is greater than KO . In like manner it may be shown, that LM is greater than NP. Therefore, if KO be not greater than KH , then GH, the multiple of AB , is always greater than $K O$, the multiple of BE ; and likewise LM, the
 multiple of CD , greater than NP , the multiple of DF .

Next, Let KO be greater than KH : therefore, as has been shown, NP is greater than NM: And because the whole GH is the same multiple of the whole $\Lambda \mathrm{B}$, that HK is of BE , the remainder GK is the same multiple of
3. 5. the remainder $A E$ that $G H$ is of $A B^{\circ}$: which is the same-that LM is of CD. In like manner, because $[\mathrm{M}$ is the same multiple of CD , that MN is of DF , the remainder LN is the same multiple of the remainder CF , that the whole LM is of the whole CD^{b} : But it was shown that $L M$ is the same multiple of CD , that GK is of AE ; therefore GK is the same multiple of AE , that LN is of CF ; that is, GK, LN are equimultiples of AE, CF : And because KO, NP are equimul- G
 tiples of BE, DF, if from KO, NP, there be taken KH , NM, which are likewise equimultiples of BE, DF, the remainders HO, MP are either equal to BE , DF , or equimultiples of them ${ }^{\text {c }}$. First, let HO, MP, be equal to $B E, D F$; and because $A E$ is to $E B$, as $C F$ to $F D$, and
that GK, LN are equimultiples of $\triangle \mathrm{E}, \mathrm{CF}$; GK shall be to Boor V . EB , as LN to FD^{d} : But HO is equal to EB, and MP to ${ }_{\mathrm{C}}$ Cor. 40 . FD; wherefore GK is to HO, as LN to MP. If therefore GK be greator than HO, LN is greater than MP; and if e A. 5.equal, equal ; and if lesse less.

But let HO, MP be equimultiples of EB, FD; and because $A E$ is to $E B$, as $C F$ to $F D$, and that of $A E, C F$ are taken equimultiples GK LN ; and of EB, FD, the equimultiples HO , MP ; if GK begreater than HO, LN is greater than MP; and if equal equal ; and if less, less ${ }^{f}$; which was likewise shownin the preceding case. If therefore GH be greater than KO , taking KH from both, GK is greater than HO ; wherefore also LN is greater than MP ; and consequently, adding NM to both, LM is greater than NP: Therefore, if GH be greater than KO , LM is greater than NP. In like manner it may be shown, that if GH be equal to KO, LM is equal to NP ; and if less, less. And in the case in which KO is not greater than KH , it has been shown that GH

「5. Def. 5.
 is always greater than KO, and likewise LM than NP : But GH, LM are any equimultiples of AB, CD, and KO, NP are any whatever of BE, DF; thereforef, as AB is to BE , so is CD to DF . If then magnitudes, \&ic. Q. E. D.

PROP. XIX. THEOR.

IF a whole magnitude be to a whole, as a magni- see N . tude taken from the first, is to a magnitude taken from the other; the remainder shall be to the remainder, as the whole to the whole.

Let the whole $A B$, be to the whole $C D$, as $A E$, a magnitude taken from $A B$, to $C F$, a magnitude taken from $C D$; the remainder EB shall be to the remainder FD , as the whole $A B$ to the whole CD.

Because $A B$ is to $C D$, as $A E$ to $C F$: likewise, alternately ${ }^{2}$, $=16.5$. K4 BA

THE ELEMENTS

$\underbrace{\text { Book V. }} \mathrm{BA}$ is to AE , as DC is to CF : and because, if magnitudes, taken jointly, be proportionals, they
-17.5. are also proportionals ${ }^{\text {b }}$ when taken separately; therefore, as BE is to EA , so is DF to FC , and alternately, as BE is to DF , so is EA to FC: But, as AE to CF, so by the hypothesis, is AB to CD ; therefore also BE , the remainder, shall be to the remainder DF , as the whole AB to the whole CD: Wherefore, if the whole, \&c. Q. E. D.

Cor. If the whole be to the whole, as a magnitude taken from the first, is to a magnitude taken
 from the other; the remainder likewise is to the remainder ; as the magnitude taken from the first to that taken from the other: 'The demonstration is contained in the preceding.

PROP. E. THEOR.

IF four magnitudes be proportionals, they are also proportionals by conversion; that is, the first is to its excess above the second, as the third to its excess above the fourth.

Let $A B$ be to. $B E$, as $C D$ to $D F$; then $B A$ is to AE , as DC to CF .

Because $A B$ is to $B E$, as $C D$ to $D F$, by divi-
-17. 5. sion^{2}, AE is to EB , as CF to FD ; and by in-- B. 5. version ${ }^{\text {b }}$, BE is to EA, as DF to FC. Where-
e 18.5. fore, by compositionc, BA is to AE , as DC is - to CF:If, therefore, four, \&cc. Q.E.D.

PROP. XX. THEOR.

See N. IF there be three magnitudes, and other three, which, taken two and two, have the same ratio; if the first be greater than the third, the fourth shall be greater than the sixth; and if equal, equal; and if less, less.

OF EUCLID.

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three magnitudes, and $\mathrm{D}, \mathrm{E}, \mathrm{F}$ other three, Boos V . which, taken two and two, have the same ratio, viz. as A is to B, so is D to E; and as B to C, so is E to F. If A be greater than C, D shall be greater than F : and, if equal, equal ; and if less, less.

Because A is greater than C, and B is any other magnitude, and that the greater has to the same magnitude a greater ratio than the less has to it ${ }^{2}$; therefore A has to B a greater ratio than C has to B : But as D is to E, so is A to B; therefore ${ }^{b} D$ has to E a greater ratio than C to B ; and because B is to C , as E to F , by inversion, C is to B, as F is to E : and D was shewn to have to E a greater ratio than C to B; therefore D has to E a greater ratio than F to Ec . But the magnitude which has
 a greater ratio than another to the same magnitude, is the greater of the twod : D is therefore greater than F .

- 10.5.

Secondly, Let A be equal to C; D shall be equal to F : Because A and C are equal to one another, A is to B , as C is to B^{c} : But A is to B, as D to E; and C is to B, as F to E; wherefore D is to E, as F to Ef^{r}; and therefore D is equal to Fg .

Next, Let A be less than C; D shall be less than F : For C is greater than A, and, as was shown in the first case, C is to B, as F to E, and in like manner B is to A, as E to D ; therefore F is greater than D, by the first case; and therefore

D is less than F. Therefore, if there be three, \&ic. Q. E. D.

PROP. XXI. THEOR.

IF there be three magnitudes, and other three, Sce N. which have the same ratio taken two and two, but in a cross order; if the first magnitude be greater than the third, the fourth shall be greater than the sixth ; and if equal, equal ; and if less, less.
$\underbrace{\text { Boox } V \text {. Let } A, B, C \text { be three magnitudes, and } D, E, F \text { other three, }}$ which have the same ratio, taken two and two, but in a cross order, viz. as A is to B, so is E to F, and as B is to C , so is D to E . If A be greater than C , D shall be greater than F; and if equal, equal ; and if less, less:

Because A is greater than C, and B is aríy 8. 5. other magnitude, A has to B a greater ratio ${ }^{2}$

- than C has to B: But as E to F, so is A to B:
-13.5. . therefore ${ }^{b} E$ has to F a greater ratio than C to B : And because B is to C. as D to E, by inversion, C is to \dot{B}, as E to D : And E was shown to have to F a greater ratio than C to B ; there-
${ }^{\text {c }}$ Cor. 13.5 ' fore E has' to F a greater ratio than E to D '; but the magnitude to which the same has a greater ratio than it has to another, is the lesser
110.5. of the $t w o^{d}$: F therefore is less than D; that
 is, D is greater than F.

Secondly, Let A be equal to C; D shall be equal to F. Be-
e7.5. cause A and C are equal, A ise to B , as C is to B : But A is to B, as E to F; and C is to B, as E to D; wherefore E is to F
f11. 5.
-9.5. equal to. Fg .
Next, Let A be less than C ; D shall be less than F: For C is greater than A, and, as was shown, C is to B, as E to D, and in like manner B is to A, as F to E ; therefore F is greater than D , by case first; and therefore, D is less than F. Therefore, if there be three, \&cc.
 Q E. D.

PROP. XXII. THEOR.

See N. IF there be any number of magnitudes, and as many others, which, taken two and two in order, have the same ratio; the first shall have to the last of the first magnitudes the same ratio which the first of the others has to the last. N. B. This is usually cited by the roords "exx aquali," or, "ex cequo."

First, Let there be three magnitudes $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and as many Boor V . others D, E, F, which, taken two and two, have the same ratio; that is, such that A is to B as D to E; and as B is to C, so is E to F; A shall be to C, as D to F.

Take of A and D any equimultiples whatever G and H ; and of B and E any equimultiples whatever K and L ; and of C and F any whatever M and N : Then, because A is to B, as D to E, and that G, H are equimultiples of A , D, and K, L equimultiples of B, A E; as G is to K, so is ${ }^{2} H$ to L : For the same reason, K is to M, as L to N ; and because there are three magnitudes $G, \mathrm{~K}, \mathrm{M}$, and other three $\mathrm{H}, \mathrm{L}, \mathrm{N}$, which, two and $t w o$, have the same ratio; if G be greater than M, H is greater than N ; and if equal, equal ; and if less, less ${ }^{\text {b }}$; and G, H are any equimultiples whatever of A, D,

- $£ 0.5$. and M, N are any equimultiples whatever of $\mathrm{C}, \mathrm{F}:$, Thereforec, as A is to C , so is D -5. Def. 5. to F .

Next, Let there be four magnitudes, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and other four $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, which, twoand two, have the same ratio, viz. as A is to B, so is E to F; and as B to C, so F to G : and as C to D, so G to E.F.G.H. H : A shall be to D , as E to H .

Because A, B, C, are three magnitudes, and E, F, G, other three, which, taken two and two, have the same ratio; by the foregoing case, A is to C, as E to G : But C is to D, as G is to H ; wherefore again, by the first case, \AA is to D , as E to H ; and so on, whatever be the number of magnitudes. Therefore, if there be any number, \&c. Q. E. D.

THE ELEMENTS

Book V.

PROP. XXIII. THEOR.

See N. IF there be any number of magnitudes, and as many others, which, taken two and two, in a cross order, have the same ratio; the first shall have to the last of the first magnitudes the same ratio which the first of the others has to the last. N. B. This is usually cited by the words, "exr cequali in proportions perturbata;" or, "ex quo perturbato."

First, Let there be three magnitudes A, B, C, and other three $\mathrm{D}, \mathrm{E}, \mathrm{F}$, which, taken two and two, in a cross order, have the same ratio, that is, such that A is to B, as E to F; and as B is to C, so is D to $E: A$ is to C, as D to F.

Take of A, B, D any equimultiples whatever G, H, K; and of $\mathrm{C}, \mathrm{E}, \mathrm{F}$ any equimultiples whatever $\mathrm{L}, \mathrm{M}, \mathrm{N}$: And because G, H are equimultiples of A, B, and that magnitudes have the same ratio which their equimultriple have ; as A is to B, so is G to H : And for the same reason, as E is to F , so is M to N : But as A is to B, so is E to F; $\quad B \quad C$ as therefore G is to H , so is M to N^{b}. And because as B is to C, so is D to E , and that H, K are equimultiples of B, D, and L, M of C, E; as H is to L , so is ${ }^{e} \mathrm{~K}$ to M : And it has been shown that G is to H , as M to N : Then, ${ }_{2}$ because there are three manitudes $\mathrm{G}, \mathrm{H}, \mathrm{L}$, and other three $\mathrm{K}, \mathrm{M}, \mathrm{N}$, which have the same ratio taken two and two in a cross
 order: if G be greater than L,
-21.5. K is greater than N ; and if equal, equal; and if less, less ${ }^{\text { }}$; and, G, K, are any equimultiples whatever of A, D; and L , N any whatever of $\mathrm{C}, \mathrm{F}:$ as, therefore, A is to C , so is D to F .

OFEUCLID.

Next, Let there be four magnitudes, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and other Boox V . four $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, which, taken two and two, in a cross order, have the same ratio, viz. A to B, as G to H; B to C, as F to G; and
A. B. C. D.
E. F. G.H. C to D, as E to $F: A$ is to D, as E to H.

Because A, B, C, are three magnitudes, and F, G, H other three, which taken two and two, in a cross order, have the same ratio ; by the first case, A is to C, as F to H : But C is to D, as E is to F; wherefore again, by the first case, A is to D , as E to H : And so on, whatever be the number of magnitudes. Therefore, if there be any number, \&c. Q. E. D.

PROP. XXIV. THEOR.

IF the first has to the second the same ratio which the third has to the fourth; and the fifth to the seSee N . cond, the same ratio which the sixth has to the fourth ; the first and fifth together shall have to the second, the same ratio which the third and sixth together have to the fourth.
Let $A B$ the first, have to C the second, the same ratio which DE the third, has to F the fourth; and let BG the fifth have to C the second, the same ratio which EH the sixth, has to F the fourth ; AG, the G first and fifth together, shall have to C the second, the same ratio which DH, the third and sixth together, has to F the fourth.

Because BG is to C, as EH to F; by inversion, C is to $B G$, as F to EH : And because, as $A B$ is to C, so is $D E$ to F; and as C to BG , so F to EH ; ex æquali², $A B$ is to $B G$, as $D E$ to $E H$: And because these magnitudes are proportionals, they shall likewise be proportionals when taken jointly ${ }^{\text {b }}$; as therefore $A G$ is to GB, so is DH to HE; but as GB to C, so is HE to F. Therefore ex æquali², as AG is to C, so is DH to F. Wherefore if the first, \&c. Q. E. D.

Cor. I. If the same bypothesis be made as in the proposition, the excess of the first and fifth shall be to the second, as

THE ELEMENTS

Boor V. the excess of the third and sixth to the fourth: The demonstration of this is the same with that of the proposition, if division be used instead of composition.

Cor. 2 The proposition holds true of two ranks of magnitudes, whatever be their number, of which each of the first rank has to the second magnitude the same ratio that the corresponding one of the second rank has to a fourth magnitude ; as is manifest.

PROP. XXV. THEOR.

IF four magnitudes of the same kind are prportionals, the greatest and least of them together are greater than the other two together.

Let the four magnitudes $\mathrm{AB}, \mathrm{CD}, \mathrm{E}, \mathrm{F}$ be proportionals, viz. $A B$ to $C D$, as E to F; and let $A B$ be the greatest of them,

- A. \& 14. and consequently F the least ${ }^{\text {a }}$. $A B$, together with F, are 5. greater than CD , together with E .

Take $A G$ equal to E, and $C H$ equal to F : Then because as $A B$ is to $C D$, so is E to F, and that $A G$ is equal to E, and $C H$ equal to $F, A B$ is to $C D$, as $A G$ to $C H$. And because AB the whole, is to the whole CD, as AG is to CH , likewise the remainder GB shall be to the remainder
19.5. HD , as the whole AB is to the whole ${ }^{\text {b }}$ $C D$: But $A B$ is greater than $C D$, therefore GB is greater than HD: And because $A G$ is equal to E , and CH to F ; AG and F together are equal to CH and E together. If therefore to the unequal magnitudes GB, HD, of which GB is
 the greater, there be added equal magnitudes, viz. to GB the two AG and F , and CH and E to HD ; AB and F together are greater than CD and E. Therefore, if four magnitudes, \&c. Q. E. D.

> PROP. F. THEOR.

See N. RATIOS which are compounded of the same ratios, are the same with one another.

OF EUCLID.

Let A be to B , as D to E ; and B to C , as E to F : The ra- Eose V . tio which is compounded of the ratios of A to B , and B to C , which by the definition of compound ratio, is the ratio of A to $C_{;}$is the same with the ratio of D to F , which by
A. B. C. D. E. F. the same definition, is compounded of the ratios of D to E, and E to F.

Because there are three magnitudes A, B, C, and three others D, E, F, which, taken two and two, in order, have the same ratio; ex xquali A is to C , as D to F^{2}. $=225$.

Next, Let A beto B, as E to F, and B to C, as D to E; there- ${ }_{\text {bis. }}$. fore, ex aquali in proportione perturbatab, A is to C , as D to F ; that is, the ratio of \hat{A} to C, which is compounded of the ratios of A to B, and B to C, is the same with the ratio
A. B. C.
D. E. F. of D to F , which is compounded of the ratios of D to E, and E to F : And in like manner the proposition may be demonstrated, whatever be the number of ratios in either case.

PROP. G. THEQR.

IFF several ratios be the same with several ratios, see s. each to each; the ratio which is compounded of ratios which are the same with the first ratios, each to each, is the same with the ratio compounded of ratios which are the same with the other ratios, each to each.
Let A be to B, as E to F; and C to D, as G to H: And let A be to B, as K to L; and C to D, as L to M : Then the ratio of K to M , by the definition ofcompound ratio, is compounded of the ratios of K to L, and L to M, which are the same with
A. B. C. D. K. L. M. E. F. G.H. N.O. P. the ratios of A to B, and C to D :
And as E to F , so let IN be to O ; and as G to H , sa let O be to P; then the ratio of N to P, is compounded of the ratios of N to O , and O to P , which are the same with the ratios of E to F , and G to H : And it is to be shown that the ratio of K to M , is the same with the fatio of N to P , or that K is to M , as N to P .

Because K is to L, as (A to B, that is, as E to F, that is, as N to O; and as L to M) so is (C to D, and so is G to H ,

Book V. 22.5. and so is O to P !) Ex æquali K is to M, as N to P. Thetefore, if several ratios, \&\&c. Q. E. D.

PROP. H. THEOR.

See N.

ItF a ratio compounded of several ratios be the same with a ratio compounded of any other ratios, and if one of the first ratios, or a ratio compounded of any of the first, be the same with one of the last ratios, or with the ratio compounded of any of the last ; then the ratio compounded of the remaining ratios of the first, or the remaining ratio of the first, if but one remain, is the same with the ratio compounded of those remaining of the last, or with the remaining ratio of the last.

Let the first ratios be those of A to B, B to C, C to D, D to E, and E to F; and let the other ratios be those of G to H, H to K, K to L , and L to M ; Also, let the ratio of A to
2 Definition of compounded satio. F, which is compounded of ${ }^{2}$ the first ratios, be the same with the ratio of G to M, which is compounded of the other ratios: And besides, let the ra-
A. B. C. D. E. F. G. H. K. L. M.
tio of Λ to D, which is compounded of the ratios of A to B, B to C, C to D, be the same with the ratio of G to K, which is compounded of the ratios of G to H , and H to K : Then the ratio compounded of the remaining first ratios, to wit, of the ratios of D to E, and E to F, which compounded ratio is the ratio of D to F, is the same with the ratio of K to M, which is compounded of the remaining ratios of K to L, and L to M of the other ratios.

Because, by the hypothesis, A is to D, as G to K, by inversion, D is to A, as K to G; and as A is to F, so is G to M ; therefore ${ }^{c}$, ex æquali, D is to F , as K to M . If therefore 2 ratio which is, \&c. Q. E. D.

PROP. K. THEOR.

1F there be any number of ratios, and any number See is. of other ratios such, that the ratio compounded of ratios which are the same with the first ratios, each to each, is the same with the ratio compounded of ratios which are the same, each to each, with the last ratios; and if coe of the first ratios, or the ratio which is compounded of ratios which are the same with several of the first ratios, each to each, be the same with one of the last ratios, or with the ratio compounded of ratios which are the same, each to each, with several of the last ratios: Then the ratio compounded of ratios which are the same with the remaining ratios of the first, each to each, or the remaining ratio of the first, if but one remain; is the same with the ratio compounded of ratios which are the same with those remaining of the last, each to each, or with the remaining ratio of the last.

Let the ratios of A to B, C to D, E to F, be the first ratios; and the ratios of G to H, K to L, M to N, O to P, Q to R , be the other ratios: And let A be to B, as S to T; and C to D, as T to V, and E to F, as V to X : Therefore, by the definition of compound ratio, the ratio of S to X is compounded

$$
\begin{aligned}
& \text { A, B; C, } \underset{\text { D, }}{\mathrm{D}, \mathrm{E}, \mathrm{~F} .} \\
& \mathrm{G}, \mathrm{H} ; \mathrm{K}, \mathrm{~L} ; \mathrm{M}, \mathrm{~N} ; \mathrm{O}, \mathrm{P} ; \mathrm{Q}, \mathrm{R} . \\
& \mathrm{e}, \mathrm{f}, \mathrm{~g} .
\end{aligned} \quad \mathrm{S}, \mathrm{~T}, \mathrm{Y}, \mathrm{Z}, \mathrm{X} . \mathrm{m} . \mathrm{b}, \mathrm{c}, \mathrm{~d} .
$$

of the ratios of S to T, T to V, and V to X, which are the same with the ratios of A to B, C to D, E to F, each to each : Also, as G to H, so let Y be to Z; and K to L, as Z to 2 ; M to N , as a to b, O to P , as b to c ; and Q to R , as c . to d : Therefore, by the same definition, the ratio of Y to d is compounded of the ratios of Y to Z, Z to a, a to b, b to c, and to H, K to I, M to N, O to P , and Q to R : Therefore, by the hypothesis, S is to X, as Y tod: Also, let the ratio of A to B, that is, the ratio of S, to T, which is one of the first ratios, be the same with the ratio of e to g, which is compounded of the ratios of e to f, and f to g, which, by the hypothesis, are the same with the ratios of G to H , and K to L , two of the other ratios; and let the ratio of h to 1 be that which is compounded of the ratios of h to k, and k to l, which are the same with the remaining first ratios, viz. of C to D, and E to F; also, let the ratio of m to p, be that which is compounded of the ratios of m to n, n to o, and o to p, which are the same, each to each, with the remaining other ratios, viz. of M to N, O to P , and Q to R : Then the ratio of h to l is the same with the ratio of m to p, or h is to l, as m to p.

$$
\begin{aligned}
& \text { h, k, l. } \\
& A, B ; C, D ; E, F \text {. } \\
& G, H ; K, L ; M, N ; O, P ; Q, R . \quad Y, Z, a, b . c, d . \\
& \text { e, } f, g \text {. } m, n, o, p \text {. } \\
& S, T, V, X .
\end{aligned}
$$

Because e is. to f, as (G to H, that is, as) Y to Z; and f is to g , as (K to L , that is, as) Z to a : thercfore, ex aquali, e is to g , as Y to a: And by the hypothesis, A is to B , that is, S to T, as e to g; wherefore S is to T, as Y to a; and, by inversion, T is to S, as a to Y; and S is to X, as Y to d; therefore, ex equali, T is to X, as a to d : Also, because h is to k as (C to D, that is, as) T to V; and k is to l, as (E to F, that is, as) V to X; therefore, ex.æequali, h is to l, as T to X : In like manner, it may be demonstrated, that m is to p, as a to d : And it has been shown, that T is to X, as a to d ; therefore ${ }^{\mathrm{a}} \mathrm{h}$ is to 1 , as m to p. Q. E. D.

The propositions G and K are usually, for the sake of brevity, expressed in the same terms with propositions F and H : And therefore it was proper to show the true meaning of them when they are so expressed; especially since they are very frequently made use of by geometers.

$\left[\begin{array}{ll}{[47}\end{array}\right]$

THE

ELEMENTS

or

E UCLID.

BOOK VI.

DEFINITIONS.
I.

Similar rectilineal figures are those which have their several angles equal, each to each, and the sides about the
 equal angles proportionals.

II.

"Reciprocal figures, viz. triangles and parallelograms, are See N. "such as have their sides about two of their angles propor"t tionals in such manner: that a side of the first figure is to " a side of the other, as the remaining side of this other is "s to the remaining side of the first.")
III.

A straight line is said to be cut in extreme and mean ratio, when the whole is to the greater segment, as the greater segment is to the less.,
IV.

The altitude of any figure is the straight line drawn from its vertex perpendicular to the base.

L?

Book VI.
い

THE ELEMENTS

PROP. I. THEOR.

Seen. Triangles and parallelograms of the same ailtitude are one to another as their bases.

Let the triangles $\mathrm{ABC}, \mathrm{ACD}$, and the parallelograms EC , CF have the same altitude, viz. the perpendicular drawn from the point Λ to BD : Then, as the base BC , is to the base CD , so is the triangle $A B C$ to the triangle $A C D$, and the paral--lelogram EC to the parallelogram CF.

Produce BD both ways to the points H, L, and take any number of straight lines $B G, G H$, each equal to the base $B C$; andDK, KL , any number of them, each equal to the base CD ; and join $\Lambda \mathrm{G}, \mathrm{AH}, \mathrm{AK}, \mathrm{AL}$: Then, because CB, BG, GH are all equal, the triangles $A H G, A G B, A B C$ are all equal ${ }^{\text {a }}$: Therefore, whatever multiple the base HC is of the base BC , the same multiple is the triangle $A H C$ of the triangle $A B C$: For the same reason, whatever multiple the base LC is of the base CD, the same multiple is the triangle AIC of the triangle ADC: And if the base HC be equal to the base CL, the criangle AHC is also equal to the triangle ALC ${ }^{3}$; and if the base HC be greater than the base CL, likewise the
 triangle AHC is greater than the triangle ALC; and if,less, less : Therefore, since there are four magnitudes, viz. the two bases $B C, C D$, and the two triangles $A B C, A C D$; and of the base BC and the triangle ABC , the first and third, any equimultiples whatever have been taken, viz. the base HC and triangle $A H C$; and of the base $C D$ and triangle $\Lambda C D$, the second and fourth, have been taken any equimultiples whatever, viz. the base CL and triangle $\Lambda L C$; and that it has been shown, that, if the base HC be greater than the base CL , the triangle AHC is greater than the triangle ALC ; and if equal, equal ;
by. def. 5. and if less, less: Therefore ${ }^{5}$, as the base BC is to the base CD, so is the triangle $A B C$ to the triangle $A C D$.

And because the parallelogram CE is double of the triangle

OF EUCLID.

$A B C^{c}$ and the parallelogran: $C F$ double of the triangle $A C D$, Boox VI. and that magnitudes have the same rato which their equimul- 4 41.1. tiples have; as the triangle ABC is to the triangle ACD , so 15.5 . is the parallelogram Et to the parallelograni CF : And because it has been shown, that, as the base BC is to the base CD, so is the triangle $A B C$ to tie triangle $A C D$; and as the triangle ABC is to the triansle $\mathrm{A} \sim \mathrm{D}$, so is the parallelogram EC to the para.lelogram CF ; therefore, as the base BC is to the base CD, so ise the parallelogram EC to the parallelogram CF. ©11.5. Wherefore triangles, 太̌c. Q. E. D.

Cor. Frum this it is plain, that triangles and parallelograms that have equal altitudes are one to another as their bases.

Let their figures be placed so as to have their bases in the same straight lué; and having drawn perpendiculars from the vertices of the triangls to the bases, the straight line which joins the vertices is pa:allel to that in which their bases aref, because the perpendiculars are both equal and pa- ${ }^{1} 33.1$. rallel to one another. Then, it the same construction be made as in the proposition, the demonstration will be the same.

PROP. II, THEOR.

IF a straight line be drawn parallel to one of the see N , sides of a triangle, it shall cut the other sides, or these produced, proportionally: And if the sides, or the sides produced, be cut proportionally, the straight line which joins the points of section shall be parallel to the remaining side of the triangle.

Let DE be drawn parallel to BC , one of the sides of the triangle $\mathrm{ABC}: \mathrm{BD}$ is to DA , as CE to EA.

Join BE, CD; then the triangle BDE is equal to the triangle $\mathrm{CDE}^{\mathrm{z}}$, because they are on the same base DE , and be- ${ }^{2} 37.1$, tween the same paraliels $\mathrm{DE}, \mathrm{BC}: \mathrm{ADE}$ is another triangle, and equal magnitud.s have the same, the same ratio ${ }^{\text {b }}$; there- 7.5 . fure, as the triangle BDE to the triangle ADE , so is the triengle CDE to the triangle ADE , but as the triangle $\cdot \mathrm{BDF}$ to the triangle ADE , so isc BD to DA , because having the same c 1. co sititude, viz. t. e perpendicuiar drawn from the puint E to $A B$, they are to one another as their bases; and for the same reason,

Boox VI. as the triangle CDE to the triangle ADE , so is CE to EA : Therefore, as BD to DA, so is CE to EAd.

Next, Let the sides $A B, A C$, of the triangle $A B C$, or these

produced; be cut proportionally in the point D, E, that is, so that BD be to DA as CE to EA , and join DE ; DE is parallel to BC.

The same construction being made, Because as BD to DA , so is CE to EA ; and as BD to DA , so is the triangle BDE
-1. 6.
f9.5.
c39.1. to the triangle $\mathrm{ADE}^{\mathrm{c}}$; and as CE to EA , so is the triangle CDE to the triangle ADE ; therefore the triangle BDE is to the triangle ADE , as the triangle CDE to the triangle ADE ; that is, the triangles $\mathrm{BDE}, \mathrm{CDE}$ have the same ratio to the triangle ADE ; and thercforef the triangle BDE is equal to the triangle CDE : and they are on the same base DE; but equal triangles on the same base are between the same parallels z ; therefore DE is parallel to BC. Wherefore, if a straight line, \&c. Q. E. D.

PROP. III. THEOR.

See N. IF the angle of a triangle be divided into two equal angles, by a straight line which also cuts the base, the segments of the base shall have the same ratio which the other sides of the triangle have to one another: And if the scgments of the base have the same ratio which the other sides of the triangle have to one another, the straight line drawn from the vertex to the point of section, divides the rerticle angle into two equal angles.

Let the angle BAC of any triangle ABC be divided into two equal angles by the straight line $A D: D D$ is to $D C$, as $B A$ to AC .

Through the point C draw CE parallel2 to DA , and let BA Boon VI. produced meet $C E$ in E. Because the straight line $A C$ meets ${ }_{2} 11.1$. the parallels AD, EC the angle $\widehat{\mathrm{A} E}$ is equal to the alternate angle $\mathrm{CAD}^{\text {s }}$: But CAD, by the hypothesis, is equal to the angle $\mathrm{B} \therefore \mathrm{D}$; wherefore BAD is equal to the angle ACE . Again, because the straight line BAE meets the parallels $A D$, EC , the outward angle BAD is equal to the inward and opposite angle AEC: but the angle $A C E$ has been proved equal to the angle BAD ; therefore also $A C E$ is equal to the angle AEC, and consequently the side AE is equal to the
 side ${ }^{\mathrm{C}} \mathrm{AC}$: And because AD is drawn parallel to one of the ${ }^{\mathrm{c} .1 .1 .}$ sides of the triangle BCE , viz. to EC, BD is to DC , as BA to AE^{d}, but AE is equal to AC ; therefore, as BD, DC, so is ${ }^{\circ} 2.6$. BA to $A C$.

Let now BD be to DC , as BA to AC , and join AD ; the angle $B A C$ is divided into two equal angles by the straight line $A D$.

The same construction being made; because, as BD to DC , so is $B A$ to $A C$; and as $B D$ to $D C$, so is $B A$ to $A E d$, because AD is parallel to EC ; therefore BA is to AC, as BA to $A E^{f}$: ${ }^{{ }^{1} 11.5}$. Consequently AC is equal to AEs , and the angle AEC is there- 89.5 . fore equal to the angle $\mathrm{ACE}^{\mathrm{b}}$: But the angle AEC is equal to 5.1 . the outward and opposite angle BAD; and the angle ACE is equal to the alternate angle $\mathrm{CAD}^{\mathrm{b}}:$ Wherefore alse the angle $B A D$ is equal to the angle CAD: Therefore the angle BAC is cut into two equal angles by the straight line AD . Therefore, if the angle, \&c. Q. E. D.

PROP. A. THEOR.

IfF the outward angle of a triangle made by producing one of its sides, be divided into two equal angles, by a straight line which also cuts the base produced ; the segments between the dividing line and the extremities of the base have the sume ratio which the other sides of the triangle have to one another: And if the segments of the base produced, have the same ratio which the other sides of the triangle have, the straight line drawn from the vertex to the point of section divides the outward angle of the triangle into two equal angles.

Let the outward angle CAE of any triangle $A B C$ be divided into two equal angles by the straight line AD which meets the base produced in $\mathrm{D}: \mathrm{BD}$ is to DC , as $B A$ to AC .

Q 31.1.

- 29.1.
© Hyp.

111. 5.
1. 5.

म5. 5 .

Through Cdraw CF parallel to AD^{2}; and because the straight line $A C$ meets the patallels $A D, F C$, the angle $A C F$ is equal to the alternate angle CAD^{n}; But CAD is equal to the angle $D A E^{c}$; therefore also DAE is equal to the angle ArF. Again, because the straight line FAE meets the parallels AD, FC, the outward angle DAE is equal to the inward and opposite angle CHA: But the angle ACF has been proved equal to the angle $D \wedge E$; therefore also the angle ACF is equal to the angle CFA, and consequently the side AF is equal to the side

$A C^{d}$: And because ΛD is parallel to $F C$, a side of the triangle $B C F, B D$ is to $D C$, as $B A$ to $\triangle F c$, but $A F$ is equal to $A C$; as therefure $B D$ is to $D C$, so is $B A$ to $A C$.

Let n sw $B D$ be to $D C$, as $B A$ to $A C$, and join AD; the angle CAD is equal to the angle DAE .

T e same construction being made, because $B D$ is to $D C$, as B .1 to AC ; and that BD is also to DC , as BA , to AF°; therefore BA is to AC , as BA to AF^{f} : wherefore AC is equal to AFg , and the angle $\mathrm{AF} \subset$ equal ${ }^{\mathrm{h}}$ to the angle ACF : But the

OF EUCLID.

the angle AFC is equal to the outward_angle EAD, and the Boor VI, angle ACF to the alternate angle CAD; therefore also EAD is equal to the angle CAD. Wherefore, if the outward,-\&c. Q. E. D.

PROP. IV. THEOR.

THE sides about the equal angles of equiangular triangles are proportionals; and those which are opposite to the equal angles are homologous sides, that is, are the antecedents or consequents of the ratios.

Let $A B C, D C E$ be equiangular triangles, having the angle ABC equal to the angle DCE , and the angle ACB to the angle DEC, and consequently² the angle BAC equal to the angle a 32.1 . CDE . The sides about the equal angles of the triangles $\mathrm{ABC}, \mathrm{DCE}$ are proportionals; and those are the homologous sides which are opposite to the equal angles.
Let the triangle DCE be placed, so that its side CE may be contiguous to BC , and in the same straight line with it : And because the angles $A B C, A C B$ are together less than two right angles ${ }^{\text {b }}, \mathrm{ABC}$, and DEC , which is equal to $A C B$, are also less than two right angles; wherefore BA, ED produced shall meet ${ }^{\text {c }}$; let them be produced and meet in the point F; and because the angle $A B C$ is equal to the angle. $\mathrm{DCE}, \mathrm{BF}$ is paralleld ${ }^{\text {to }} \mathrm{CD}$. Again, because the angle ACB is equal to the angle $\mathrm{DEC}, \mathrm{AC}$ is parallel to FE^{2} :
 Therefore FACD is a parallelogram ; and consequently AF is equal to CD , and AC to $\mathrm{FD}=$: And because AC is parallel e 34,1 . to FE , one of the sides of the triangle $\mathrm{FBE}, \mathrm{BA}$ is to AF , as
 $C D$, so is $B C$ to $C E$; and alternately, as $A B$ to $B C$, so is $D C$ to CE : A gain, because CD is parallel to BF , as BC to CE , so is $F D$ to DEf F; but $F D$ is equal to $A C$; therefore, as $B C$ to CE , so is AC to DE : And alternately, as BC to CA , so CE to DE: Therefore, because it has been proved that $A B$ is to $B C$, as $D C$ to $C E$, and as $B C$ to $C A$, so $C E$ to $E D$, ex equalin, $B A$ is to $A C$ as $C D$ to $D E$. Therefore the sides, ${ }^{n} 22 . \dot{s}_{\text {. }}$ \&c. Q.E.D.

THE ELEMENTS

Book VT.

PROP. V. THEOR,

IF the sides of two triangles, about each of their angles, be proportionals, the triangles shall be equiangular, and have their equal angles opposite to the homologous sides.

Let the triangles $\mathrm{ABC}, \mathrm{DEF}$ have their sides proportionals, so that AB is to BC , as $D E$ to EF ; and BC to CA , as EF to F1) ; and consequently, ex æquali, BA to AC , as ED to DF; the triangle ABC is equiangular to the triangle DEF , and their equal angles are opposite to the homologous sides, viz. the angle ABC equal to the angle DEF , and BCA to EFD , and also BAC to EDF.

At the points E, F, in the straight line $E F$, makes ${ }^{2}$ theangle FEG equal to the angle ABC , and the angle EFG equal ta BCA ; wherefore the remain-
-32. 1. ing angle BAC is equal to the remaining angle EGFb, and the triangle ABC is therefore equiangular to the triangle GEF ; and consequently they have their *sides opposite
c4. 6. to the equal angles proportionals ${ }^{c}$. Wherefore, as AB to BC , so is GE to EF ; but
d11.5. as AB to BC , so is DE to EF ; therefore as DE to EF , sod GE to EF: Therefore DE and GE have the same ratio to EF , and consequently are equal ${ }^{c}$: For the same reason DF is, equal to FG: And because, in the triangles DEF, GEF, DE is equal to EG , and EF common, the two sides DE, EF, are
8. 1. equal to the two GE, EF, and the base DF is equal to the base GF ; therefore the angle DEF is equalf to the angle GEF, and the other angles to the other angles which are subtended
84. 1. by the equal sidess. Wherefore the angle DFE is equal to the angle GFE, and EDF to EGF: And because the angle DEF is equal to the angle GEF, and GEF to the angle ABC; therefore the angle ABC is equal to the angle DEF: For the same reason, the angle ACB is equal to the angle DFE, and the angle at A, to the angle at D. Therefore the triangle $A B C$ is equiangular to the triangle DEF. Wherefore, if the sides, \&r. Q. E. D.

PROP. VI. THEOR.

IF two triangles have one angle of the one equal to one angle of the other, and the sides about the equal angles proportionals, the triangles shall be equiangular, and shall have those angles equal which are opposite to the homologous sides.

Let the triangles $\mathrm{ABC}, \mathrm{DEF}$ have the angle BAC in the one equal to the angle EDF in the other, and the sides about those angles proportionals; that is, BA to AC , as ED to DF ; the triangles ABC , DEF are equiangular, and have the angle $A B C$ equal to the angle DEF, and $A C B$ to DFE.

At the points D, F, in the straight line DF , make ${ }^{2}$ the an- ${ }^{-03.2}$ gle FDG equal to either of the angles BAC, EDF; and the angle DFG equal to the angle ACB: Wherefore the remaining angle at B is equal to the remaining one at, G^{b}, and consequently the triangle ABC is equiangular to the triangle DGF ; and therefore as BA to AC , so is ${ }^{\text {c }} \mathrm{GD}$

 to DF ; but by the hypothesis, as $B A$ to $A C$, so is $E D$ to $D F$; as therefore $E D$ to DF , so is ${ }^{d} \mathrm{GD}$ to DF ; wherefore ED is equal ${ }^{\mathrm{c}}$ to DG ; and ${ }^{\mathrm{d}}{ }^{\mathrm{d}} 11.5$. DF is common to the two triangles EDF, GDF : Therefore the two sides ED, DF are equal to the two sides GD, DF; and the angle EDF is equal to the angle GDF; wherefore the base EF is equal to the base FGr, and the triangle EDF to ${ }^{5}$ \&.1. the triangle GDF, and the remaining angles to the remaining angles, each to each, which are subtended by the equal sides: Therefore the angle DFG is equal to the angle DFE, and the angle at G to the angle at E : But the angle DFG is equal to the angle $A C B$; therefore the angle $A C B$ is equal to the angle DFE: And the angle BAC is equal to the angle EDFs; ${ }^{8} \mathrm{H} 5$. wherefore aiso the remaining angle at B is equal to the remaining angle at E . Therefore the triangle ABC is equiangular to the triangle DEF. Wherefore, if two triangles, \&ic. Q. E. D.

156

THE ELEMENTS
Book VI.
$\underbrace{\text { Book }}$

PROP. VII. THEOR.

$S_{\text {sse }} \mathrm{N}$. IF two triangles have one angle of the one equal to one angle of the other, and the sides about two other angles proportionals, then, if each of the remaining angles be either less, or not less, than a right angle ; or if one of them be a right angle: The triangle shall be equiangular, and have those angles equal about which the sides are proportionals.

Let the two triangles $A B C$, DEF have one angle in the one equal to one angle in the other, viz. the angle $B A C$ to the angle EDF, and the sides about two other angles ABC, DEF proportionals, so that $A B$ is to $B C$, as $D E$ to $E F$; and, in the first case, let each of the remaining angles at C, F be less than a right angle. The triangle $A B C$ is equiangular to the ariangre $D E F$, viz. the angle $A B C$ is equal to the angle $D E F$, and the remaining angle at C to the remaining angle at F.

For if the angles $A B C, D E F$ be not equal, one of them is greater than the other: Let $A B C$ be the greater, and at the point B, in the straight line $A B$, make the angle $A B G$ equal to the angle ${ }^{2}$ DEF: And because the angle at A is equal to the angle at D, and the angle ABG to the angle DEF; the remaining
 angle AGB is equal ${ }^{\text {b }}$ to the remaining angle DFE: Therefore the triangle $A B G$ is eqुuiangular to the triangle DEF ; wherefore ${ }^{\mathrm{c}}$ as AB is to BG , so is DE to EF ; but as DE to EF, 5θ, by hypothesis, is $A B$ to $B C$; therefore as $A B$ to $B C$, so is $A B$ to $B G^{d}$: and because $A B$ has the same ratio to each of the lines $B C, B G ; B C$ is equal ${ }^{e}$ to $B G$; and therefore the angle $B G C$ is equal to the angle $B C G^{f}$: But the angle $B C G$ is, by hypothesis, less than a right angle ; therefore also the angle BGC is less than a right angle, and the adjacent angle $A G B$ must be greater than a right angle 8 . But it was proved that the angle $(B B$ is equal to the angle at F; therefore the angle at F is greater than a right angle: But, by the hypothesis; it is less than a right

OF EUCLID.

angle; which is absurd. Therefore the angles $\mathrm{ABC}, \mathrm{DEF}$ Boor'Yı. are not unequal, that is, they are equal: And the angle at A is equal to the angle at D; wherefore the remaining angle at C is equal to the remaining angle at F : Therefore the triangle ABC is equiangular to the triangle DEF .

Next, Let each of the angles at C, F be not less than a right angle: The triangle ABC is also in this case equiangular to the triangle DEF.

The same construction being made, it may be proved in like manner that $B C$ is equal to $B G$, and the angle at C equal to the angle BGC: But the angle at C is not less than a right
 angle ; therefore the angle BGC is not less than a rightangle: Wherefore two angles of the triangle BGC, are together not less than two right angles, which is impossible ${ }^{\text {n }}$; and therefore the triangle $A B C$ may be ${ }^{\mathrm{n}} 1 \%$. 1 . proved to be equiangular to the triangle DEF , as in the first case.

Lastly, Let one of the angles at C, F, viz. the angle at C, be a right angle; in this case likewise the triangle ABC is equiangular to the triangle DEF.

For if they be not equiangular, make, at the point B of the straight line $A B$, the angle $A B G$ equal to the angle DEF; then it may be proved, as in the first case, that BG is equal to BC : But the angle $B C G$ is a right angle, therefore the angle BGC is also a right angle; whence two of the angles of the triangle BGC are together not less than two right angles, which is impossibleh: Therefore the triangle $A B C$ is equi-
 angular to the triangle DEF. \&c. Q. E. D.

PROP. VIII. THEOR.

See \mathbb{N}. IN a right angled triangle, if a perpendicular be draivn from the right angle to the base ; the triangles each side of it are similar to the whole triangle, and to one another.

Let ABC be a right angled triangle, having the right angle BAC ; and from the point A let AD be drawn perpendicular to the base BC : The triangles $\mathrm{ABD}, \mathrm{ADC}$ are similar to the whole triangle $A B C$, and to one another.

Because the angle BAC is equal to the angle ADB , each of thens being a right angle, and that the angle at B is common to the two triangles, $A B C$,
${ }^{6} 1$. def: 6 .

ABD : the remaining angle $\triangle \mathrm{CB}$ is equal to the remaining angle BAD^{2} : Therefore the triangle ABC is equiangular to the triangle ABD , and the sides about their equal angles are proportionals ${ }^{\text {b }}$; wherefore the triangles are similar ${ }^{c}$: In

the like manner it may be demonstrated, that the triangle ADC is equiangular and similar to the triangle ABC : And the triangles $\mathrm{ABD}, \mathrm{ACD}$, being both equiangular and similar to $A B C$, are equiangular and similar to each other. Therefore, in a right angled, \&ic. Q. E. D.

Cor. From this it is manifest that the perpendicular drawn from the right angle of a right angled triangle to the base, is a mean proportional between the segments of the base: And also, that each of the sides is a mean proportional between the base, and its segment adjacent to that side: Because in the triangles $\mathrm{BDA}, \mathrm{ADC}, \mathrm{BD}$ is to DA , as DA to DC^{b}; and in the' triangles $\mathrm{ABC}, \mathrm{DB}, \mathrm{BC}$ is to BA , as BA to BD^{b}; and in the triangles $A B C, \triangle C D, B C$ is to C, as $C A$ to $C D^{\text {b }}$.

PROP. IX. PROB.

F
ROM a given straight line to cut off any part ses. required.

Let $A B$ be the given straight line ; it is required to cut off any part from it.

From the point A draw a straight line AC , making any angle with $A B$; and in $A C$ take any point D, and take $A C$ the same multiple of $A D$, that $A B$ is of the part which is to be cut off from it: join BC, and draw DE parallel to it: Then AE is the part required to be cut off.

Because ED is parallel to one of the sides of the triangle $A B C$, viz. to $B C$, as $C D$ is to $\mathrm{D} A$, so is ${ }^{2} \mathrm{BE}$ to EA : and, by composition ${ }^{b}, \mathrm{CA}$ is to AD , as BA to AE : But CA is a multiple of AD ; therefore ${ }^{\mathrm{c}} \mathrm{BA}$ is the same multiple of $A E$: Whatever part therefore $A D$ is of $A C, A E$ is the same
 part of $A B$: Wherefore, from the straight line $A B$ the part required is cut off. Which was to be done.

> PROP. X. PROB.

To divide a given straight line similarly to a given divided straight line, that is, into parts that shail have the same ratios to one another which the parts of the divided given straight line have.

Let $A B$ be the straight line given to be divided; and $A C$ the divided line: it is required to divide $A B$ similarly to $A C$.

Let $A C$ be divided in the points D, E; and let $A B, A C$ be placed so as to contain any angle, and join BC , and through the points D, E, draw ${ }^{2}$ DF, EG parallels to it; and through 2 31. i.
Ddraw DHK parallel to AB : Therefore each of the figures FH, HB, is a parallelogram ; wherefore DH is equal ${ }^{6}$ to $\mathrm{FG}, 434$.

THE ELEMENTS

Book VI.
and HK to GB : And because HE is parallel to KC, one of the sides of the triangle DKC, as CE to ED, so is ${ }^{c} \mathrm{KH}$ to HD : But KH is equal to BG , and HD to GF ; therefore, as CE to ED, 'so is BG to GF: Again, because FD is parallel to EG , one of the sides of the triangle AGE, as ED to DA, so is GF to FA : But it has been proved that CE is to ED , as BG to GF ; and as FD to DA, so GF to FA: Therefore, the given straight line $A B$ is divided similarly to $A C$. Which was to be done.

PROP. XI. PROB.

To find a third proportional to two given straight
lines.
Let AB, AC be the two given straight lines, and let them be placed so as to contain any angle ; it is required to find a third proportional to AB ; Λ C.
Produce AB, AC, to the points D, E; and make BD equal to AC ; and having joined BC , through D , draw DE parallel to it. ${ }^{3}$

Because BC is parallel to DE , a side of
-2. 6. the triangle $\mathrm{ADE}, \mathrm{AB}$ is ${ }^{\mathrm{b}}$ to BD , as AC to $C E$: But BD is equal to AC ; as there-
 fore $A B$ to $A C$, so is $A C$ to $C E$. Wherefore, 'to the two given straight lines AB, AC a third proportional CE is found. Which was to be done.

PROP. XII. PROB.

To straight lines.

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the three given straight lines; it is requires to find a fourth proportional to A, B, C.

Take two straight lines DE, DF, containing any angle Boak VI. EDF ; and upon these make DG equal to A, GE equal to B , and DH equal to C ; and having joined GH, draw EF parallel ${ }^{2}$ to it through the point E : And because GH is parallel to EF, one of the sides of the triangle $D E F$, DG is to GE, as DH to HF^{b}; but DG is equal to
 A, GE to B , and DH to C; therefore, as A is to B, so is C to HF. Wherefore to the three given straight lines A, B, C, a fourth proportional HF is found. Which was to be done.

PROP. XIII. PROB.

To find a mean proportional between two given
straight lines.
Let $A B, B C$ be the two given straight lines; it is required to find a mean proportional between them.

Place $A B, B C$ in a straight line, and upon $A C$ describe the semicircle ADC, and from the point B draw ${ }^{2} \mathrm{BD}$ at right angles to $A C$, and join $A D, D C$.

Because the angle $A D C$ in a semicircle is a right angleb, and because in the right angled triangle $A D C, B D$ is drawn from the right angle perpendicular to the base, DB is a mean propor-
 tional between AB, BC the segments of the base ${ }^{\mathrm{c}}$: Therefore ${ }^{\text {e }} \mathrm{Cor}, 8_{8}, 6_{0}$ between the two given straight lines $A B, B C$, a mean proportional DB is found. Which was to be done.

PROP. XIV. THEOR.

AQUAL parallelograms, which have one angle of the one equal to one angle of the other, have their sides about the equal angles reciprocally proportional: And parallelograms that have one angle of the one equal to one angle of the other, and their sides about the equal angles reciprocally proportional, are equal to one another.

Let $A B, B C$ be equal parallelograms, which have the angles at B equal, and let the sides DB, BE be placed in the same straight line; wherefore also FB, BG are in one straight equal angles, are reciprocally proportional ; that is, DB is to BE , as GB to BF .

Complete the parallelogram FE ; and because the parallelogram $A B$ is equal to $B C$, and that FE is another parallelogram, $A B$ is to $F E$, as $B C$ to $F^{\text {b }}$: But as $A B$ to $F E$, so is the base DB to BE^{c}; and as $B C$ to $F E$, so is the base of GB to BF ; therefore, as DB to BE , so is GB to BF . Wherefore, the sides of the parallelograms
 $A B, B C$ about their equal angles are reciprocally proportional.

But, let the sides about the equal angles be reciprocally proportional, viz. as DB to BE , so GB to BF ; the parellelogram AB is equal to the parallelogram BC .

Because, as DB to BE , so is GB to BF ; and as DB to BE , so is the parallelogram AB to the parallelogram FE ; and as $G B$ to $B F$, so is the parallelogram $B C$ to the parallelogram FE ; therefore as AB to FE , so BC to FE : : Wherefore the
e 9.5. parallelogram $A B$ is equale to the parallelogram $B C$. Therefore equal parallelograms, \&cc. Q. E. D.

PROP. XV. THEOR.

Equal triangles which have one angle of the other equal to one angle of the other, have their sides about the equal angles reciprocally proportional: And triangles which have one angle in the one equal to one angle in the other, and their sides about the equal angles reciprocally proportional, are equal to one another.

Let ABC, ADE be equal triangles, which have the angle $B A C$ equal to the angle $D A E$; the sides about the equal angles of the triangles are reciprocally proportioual ; that is, CA is to $A D$, as EA to $A B$.

Let the triangles be placed so, that their sides, CA, AD be in one straight line; wherefore also EA and AB are in one straight line ${ }^{2}$: and join BD. Because the triangle $A B C$ is ${ }^{2} 14.1$. equal to the triangle ADE , and that ABD is another triangle; therefore as the triangle CAB is to the triangle BAD , so is triangle $E A D$ to triangle $\mathrm{DAB}^{\text {b }}$: But as triangle $C A B$ to triangle $B A D$, so is the base CA to AD^{c}; and as triangle EAD to triangle DAB, so is the base EA to $A B^{c}$: as
 therefore CA to AD ; so is EA to AB^{d}; wherefore the sides of the triangles $\mathrm{ABC}, \mathrm{ADE}$ about ${ }^{\text {d }} 11.5$. the equal angles are reciprocally proportional.

But let the sides of the triangles $\mathrm{ABC}, \mathrm{ADE}$ about the equal angles be reciprocally proportional, viz. CA to AD , as EA to AB ; the triangle ABC is equal to the triangle ADE .

Having joined BD as before; because, as CA to AD , so is $E A$ to $A B$; and as $C A$ to $A D$, so is triangle $A B C$ to triangle $B A D$; and as $E A$ to $A B$, so is triangle $E A D$ to triangle $B A D^{c}$; therefore as triangle BAC to triangle BAD , so is riangle EAD to triangle BAD ; that is, the triangles BAC , $E A D$ have the same ratio to the triangle BAD : Wherefore the triangle ABC is equale to the triangle ADE . Therefore $: 9.5$. equal triangles, \&c, Q. E. D.

PROP. XVI. THEOR.

IfF four straight lines be proportionals, the rectangle contained by the extremes is equal to the rectangle contained by the means: And if the rectangle contained by the extremes be equal to the rectangle contained by the means, the four straight lines are proportionals.

Let the four straight lines $\mathrm{AB}, \mathrm{CD}, \mathrm{E}, \mathrm{F}$, be proportionals, viz. as $A B$ to $C D$, so E to F; the rectangle contained by $A B$, F is equal to the rectangle contained by CD, E.
a 11. 1. From the points A, C draw AG, CH at right angles to $A B, C D$; and make $A G$ equal to F, and $C H$ equal to E, and complete the parallellograms BG, DH : Because, ás AB to CD , so is E to F ; and that E is equal to CH , and F to $\mathrm{AG} ; \mathrm{AB}$ is ${ }^{\text {b }}$ to CD as CH to AG . Therefore the sides of the parallelograms BG, DH about the equal angles are reciprocally proportional ; but parallelograms which have their sides about equal angles reciprocally proportional, are equal to one another ${ }^{\text {c }}$; therefore the parallelogram BG is equal to the parallelogram DH: And the parallelogram BG is contained by the straight lines $A B, F$; because $A G$ is equal to F; and the parallelogram DH is contained by CD and E; because CH is equal to E ; Therefore the rectangle contained by the straight lines $A B, F$ is equal to that which is contained by $C D$ and E.

And if the rectangle contained by the straight lines $A B, F$ be equal to that which is contained by CD, E; these four lines are proportional, viz. $A B$ is to $C D$, as E to F.

The same construction being made, because the rectangle contained by the straight lines $A B, F$ is equal to that which is contained by CD, E, and that the rectangle BG is contained by $A B, F$, because $A G$ is equal to F; and the rectangle $D H$ by $C D, E$, because $C H$ is equal to E; therefore the parallelogram BG is equal to the parallelogram DH ; and they are
equiangular: But the sides about the equal angles of equal Boos Vr. parallelograms-are reciprocally proportionale: Wherefore, as $A B$ to $C D$, so is $C H$ to $A G$; and $C H$ is equal to E, and $A G^{c}{ }^{6} .6$. to F : as therefore $A B$ is to $C D$, so E to F. Wherefore, if four, \&ic. Q. E. D.

PROP. XVII. THEOR.

IFF three straight lines be proportionals, therectangle contained by the extremes is equal to the square of the mean : and if the rectangle contained by the, extremes be equal to the square of the mean, the three straight lines are proportionals.
Let the three straight lines A, B, C be proportionals, viz. as A to B, so B to C; the rectangle contained by A, C is equal to the square of B.

Take D equal to B ; and because as A to B, so B to C, and that B is equal to D : A is ${ }^{2}$ to B, as D to C : But, if four $: 7 . \%$. straight lines be proportionals, the rectangle contained by the extremes is equal to that which is contained by the means ${ }^{\text {}}$: Therefore the rectangle contained by A, C is equal to that contained by B, D : But the rect-
 angle contained by B , D is the square of B; because B is equal to D : Therefore the rectangle contained by A, C is equal to the square of B.
And if the rectangle contained by A, C be equal to the square of $B ; A$ is to B, as B to C.

The same corstruction being made, because the rectangle contained by Λ, C is equal to the square of B, and the square of B is equal to the rectangle contained by B, D, because B is equal to D; therefore the rectangle contained by A, C is equal to that contained by B, D; but if the rectangle contained by the extremes be equal tothat contained by the means, the four straight lines are proportionals ${ }^{\text {b }}$: Therefore A is to $\mathrm{M}_{3} \quad \mathrm{~B}$, as

Book VI. B, as D to C; but B is equal to D; wherefore, as A to B, so B to C ; Therefore, if three straight lines, \&rc. Q. E. D.

PROP. XYIII. 'PROB.

See N. UPON a given straight line to describe a rectilineal figure similar, and similarly situated to a given rectilineal figure.

Let $A B$ be the given straight line, and CDEF the given rectilineal figure of four sides; it is required upon the given straight line $A B$ to describe a rectilineal figure similar, and similarly situated to CDEF.

Join DF, and at the points A, B in the straight line $A B$,
-23.1. make ${ }^{2}$ the angle BAG equal to the angle at C, and the angle $A B G$ equal to the angle $C D F$; therefore the remaining angle CFD is equal to the remaining angle $\mathrm{AGB}^{\mathrm{b}}$. Wherefore the triangle FCD is equiangular, to the triangle G A B: Again, at the points G, B in the straight line GB, make ${ }^{2}$ the angle BGH equal to the angle DFE, and the angle $G B H, A$
 equal to FDE; therefore the remaining angle FED is equal to the remaining angle GHB , and the triangle FDE equiangular to the triangle GBH: Then, because the angle AGB is equal to the angle CFD, and BGH to DFE, the whole angle AGH is equal to the whole CFE: For the same reason, the angle ABH is equal to the angle CDE ; also the angle at A is equal to the angle at C , and the angle GHB to FED : Therefore the rectilineal figure ABHG is equiangular to CDEF : But likewise these figures have their sides about the equal angles proportionals : because the triangles $G A B, F C D$ being equiangular,
:4. 4. $B A$ is ${ }^{c}$ to $A G$, as $D C$ to $C F$; and because $A G$ is to $G B$, as CF to FD; and as GB to GH, so, by reason of the equiangu-
-22. 5. lar triangles BGH, DFE, is FD to FE; therefore, ex æqualid, AG is to GH , as CF to FE : In the same manner it may be proved that AB is to BH , as CD to DE : And GH is to

HB , as

HB , as FE to $E \mathrm{D}^{c}$. Wherefore, because the rectilineal figures Book VI. $\mathrm{ABHG}, \mathrm{CDEF}$ are equiangular; and have theirsides about the equal angles proportionals, they are similar to one anothore. e 1. def. 6 .

Next, let it be required to describe upon a given straight line $A B$, a rectilineal figure similar, and similarly situated to the rectilineal figure CDKEF.

Join DE , and upon the given straight line AB describe the rectilineal figure ABHG similar, and similarly situated to the quadrilateral figure CDEF, by the former case ; and at the points B, H, in the straight line BH , make the angle HBL equal to the angle EDK , and the angle BHLequal to the angle DEK ; therefore the remaining angle at K is equal to the remaining angle at L : And because the figures ABHG, CDEF are similar, the angle GHB is equal to the angle FED, and BHL is equal to DEK ; wherefore the whole angle GHL is equal to the whole angle FEK: For the same reason the angle ABL is equal to the angle CDK: Therefore the five-sided figures AGHLB, CFEKD are equiangular; and because the figures AGHB, CFED are similar, GH is to HB , as FE to ED ; and as HB to HL, so is ED to EK = ; therefore, ex æqua$\mathrm{li}^{\mathrm{d}}, \mathrm{GH}$ is to HL , as FE to EK : Fur the same reason, AB is ${ }^{\text {c } 4.6 .}$ to BL as CD to DK : And BL is to LH , as ${ }^{\circ} \mathrm{DK}$ to KE, be- ${ }^{\circ}$ 22. 5. cause the triangles $\mathrm{BLH}, \mathrm{DKF}$ are equiansular: Therefore, because the five-sided figures AGHLB, CFEKD are equiangular, and have their sides about the equal angles proportionals, they are similar to one another: and in the same manner a rectilineal figure of six or more sides may be described upon a given straight line similar to one given, and so on. Which was to be done.

PROP. XIX. THEOR.

Similar triangles are to one another in the duplicate ratio of their homologrous sides.

Let $A B C$, DEF be similar triangles, having the angle B equal to the angle E, and let $A B$ be to $B C$, as $D E$ to $E F$, so that the side BC is homologous to EF^{2} : the triangle ABC^{2} 12. def, has to the triangle DEF, the duplicate ratio of that which $B C$ has to EF.

Take BG a third proportional to $\mathrm{BC}, \mathrm{EF}^{\mathrm{b}}$: so that BC is ${ }^{1}$ 1!. 6 . to EF , as EF to BG , and join G_{1} : Then, because as AB to BC , so DE to EF ; alternately', AB is to DE , as BC to 16 . 5 .

$$
\mathrm{M} 4
$$

Book VI. EF : But as BC to EF , so is EF to BG ; therefored as AB
-11. 5. to DE, so is EF to BG : Wherefore the sides of the triangles ABG, DEF, which are about the equal angles, are reciprocally proportional: But triangles which have the sides about two equal angles reciprocally proportional are equal to one another ${ }^{\text {: }}$: Therefore the triangle ABG is. equal to the triangle DEF: And because as BC is to EF , so EF to BG ; and that
 if three straight lines
${ }^{5} 10$. def. 5 . be proportionals, the first is said ${ }^{f}$ to have to the third the duplicate ratio of that which it has to the second; BC therefore has to BG the duplicate ratio of that which BC has to EF: But as $B C$ to $B G$, so is 8 the triangle $A B C$ to the triangle $A B G$. Therefore the triangle $A B C$ has to the triangle $A B G$ the duplicate ratio of that which BC has to EF : But the triangle ABG is equal to the triangle DEF: Whercfore also the triangle $A B C$ has to the triangle DEF the duplicate ratio of that which BC has to EF. Therefore similar triangles, \&c. Q. E. D.

Cor. From this it is manifest, that if three straight lines be proportionals,'as the first is to the third, so is any triangle upon the first to a similar, and similarly described triangle upon the second.

PROP. XX. THEOR.

Similar polygons may be divided into the same number of similar triangles, having the same ratio to one another that the polygons have; and the polygons have to one another the duplicate ratio of that which their homologous sides have.
Let $\mathrm{ABCDE}, \mathrm{FGHK} \mathrm{L}$ be similar polygons, and let AB be the hontologous side to FG: The polygons ABCDE , FGHKL may be divided into the same number of similar triangles, whereof each to each has the same ratio which the polygons have; and the polygon ABCDE has to the polygon FGHKL the duplicate ratio of that which the side $A B$ has to the side FG .
Join BE, EC, GL, LH : And because the polygon $A B C D E$
is similar to the polygon FGHKL, the angle BAE is equal to the Boox VI.
 because the triangles ABE, FGL have an angle in one equal to an angle in the other, and their sides about these equal angles proportionals, the triangle ABE is equiangular ${ }^{\mathrm{b}}$, and there- ${ }^{\mathrm{b}}$. 6.6 . fore similar to the triangle FGLc; wherefore the angle ABE c4. 5. is equal to the angle FGL: And, because the polygons are similar, the whole angle ABC is equal ${ }^{2}$ to the whole angle FGH ; therefore the remaining angle EBC is equal to the remaining angle LGH: And because the triangles $\mathrm{ABE}, \mathrm{FGL}$ are similar, $E B$ is to $B A$, as $L G$ to GF^{2}; and also, because the polygons are similar, AB is to BC , as FG to GH^{2}; therefore, ex æqualid, ©2. j. EB is to BC , as LG to GH ; that is, the sides about the equal angles EBC, LGH are proportionals; therefore ${ }^{d}$ the triangle $E B C$ is equiangular to the triangle LGH , and similar to itc. For the same reason, the triangle ECD likewise is similar to the triangle LHK : therefore the si-
 milar polygons $\mathrm{ABCDE}, \mathrm{FGHKL}$ are divided into the same number of similar triangles.

Also these triangles have, each to each, the same ratio which the polygons have to one another, the antecedents being ABE , EBC, ECD, and the consequents FGL, LGH, LHK: And the polygon ABCDE has to the polygon FGHKL the duplicate ratio of that which the side AB has to the homologous side FG.

Because the triangle ABF is similar to the triangle FGL , ABE has to FGL, the duplicate ratio ${ }^{c}$ of that which the side e 19.6 . BE has to the side GL: For the same reason, the triangle BEC has to GLH the duplicate ratio of that which BE has to GL: Therefore, as the triangle ABE to the triangle FGL, sof is the 111.5 . triangle BEC to the triangle GLH. Again, because, the triiangle EBC is similar to the triangle LGH, EBC has to LGH, the duplicate ratio of that which the side EC has to the side LH: For the same reason, the triangle ECD has to the triangle

Boox VI. LHK, the duplicate ratio of that which EC has to LH: As triangle
ECD to the triàngle
LHK: But it has been proved, that the triangle EBC is likewise to the
 triangle
LGH, as the triangle $A B E$ to the triangle FGL. Therefore, as the triangle ABE to the triangle FGL , so is triangle EBC to triangle LGH, and triangle ECD to triangle LHK: And -therefore, as one of the antecedents to one of the consequents, so are all the antecedents to all the consequents g . Wherefore, as the triangle ABE to the triangle FGL, so is the polygon ABCDE to the polygon FGHKL: But the triangle ABE has to the triangle FGL, the duplicate ratio of that which the side AB has to the homologous side FG. Therefore also the polygon ABCDE has to the polygon FGHKL the duplicate ratio - of that which AB has to the homologous side FG. Wherefore similar polygons, \&c. Q. E. D.

Cor. I. In like manner, it may be proved, that similar four sided figures, or of any number of sides, are one to another in the duplicate ratio of their homologous sides, and it has already been proved in triangles. Thercfore, universally, similar rectilintal figures are to one another in the duplicate ratio of their homologous sides.

Cor. 2. And if to AB, FG, two of the homologous sides, n 10. def.5. a third proportional M be taken, $A B$ hash to M the duplicate ratio of that which $A B$ has to $F G$: but the four-sided figure or polygon upon $A B$, has to the four-sided figure or polygon upon FG likewise the duplicate ratio of that which AB has to FG: Therefore, as $A B$ is to M, so is the figure upon $A B$ to the figure upon FG, which was also proved in triangles ${ }^{i}$. Therefore, universally, it is manifest, that if three straight lines be proportionals, as the third is to the third, so is any rectilineal figure upen the first, to a similar and similarly described rectilineal figure upon the second.

PROP. XXI. THEOR.
$R_{\text {ectiniaveal figures whichare similar to the same }}$ rectilineal figure, are also similar to one another.

Let each of the rectilineal figures A, B be similar to the rectilineal figure C : The figure A is similar to the figure B .

Because A is similar to C , they are equiangular, and also have their sides about the equal angles proportionalsá Again, ${ }^{2}$ 1. def. s . because B is similar to C, they are equiangular, and have their sides about the equal angles proportionals². Theretore the figures
 A, B are each of them equiangular to C, and have the sides about the equal angles of each of them and of B proportionals. Wherefore the rectilineal figures A and C are equiangular ${ }^{\mathrm{b}}$, and have their sides ${ }^{\circ} 1 . A x .1$. about the equal angles proportionalsc. Therefore A is similar ${ }^{\mathrm{c}}{ }^{\mathrm{c}} 11.5$. to B. Q. E. D.

PROP. XXII. THEOR.

I
F four straight lines be proportionals, the similar rectilineal figures similarly described upon them shall also be proportionals; and if the similar rectilineal figures similarly described upon four straight lines be proportionals, those straight lines shall be proportionals.

Let the four straight lines $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}, \mathrm{GH}$ be proportionals, viz. AB to CD , as EF to GH , and upon AB, CD let the similar rectilineal figures KAB, LCD be similarly described; and upon EF, GH the similar rectilineal figures MF, NH, in like manner : The rectilineal figure $K A B$ is to CD, as MF to NH.
To AB, CD take a third proportional ${ }^{2} \mathrm{X}$; and to EF, GH : 11. ϵ. third proportional O : And because AB , is to CD , as EF to 3 H , and that CD is ${ }^{\circ}$ to X , as GH to O ; wherefore; ex $\cdot 11.5$. equalic, as $A B$ to X, so $E F$ to O : But as $A B$ to X, so is the cog. 5 . rectilineal

THE ELEMENTS

Boox VI.
4. Cor. 30) 6 .
-11.5.
e 12. 6.
『18. 6.
rectilineal KAB to the rectilineal LCD , and as EF to O , so is ${ }^{d}$ the rectilineal MF to the rectilineal NH: Therefore, as KAB to $\operatorname{LCD}, \mathrm{so}^{\mathrm{b}}$ is MF to NH .

And if the rectilineal KAB be to LCD, as MF to NH ; the straight line AB is to CD , as EF to GH .
Make as $A B$ to CD, so EF to PR, and upon PR describe ${ }^{5}$ the rectilineal figure SR similar and similarly situated to either

of the figures MF, NH: Then, because as AB to CD , so is EF to $P R$, and that upon $A B, C D$ are.described the similar and similarly situated rectilineals KAB , LCD, and upon EF , PR , in like manner, the similar rectilineals $\mathrm{MF}, \mathrm{SR} ; \mathrm{KAB}$ is to LCD , as MF to SR ; but by the hypothesis KAB is to LCD , as MF to NH; and , therefore the rectilineal MF having the
:9.5. same ratio to each of the two NH, SR, these are equal g to one another: They are also similar, and similarly situated; therefore GH is equal to PR : And because as AB to CD , so is EF to PR, and that PR is equal to GH ; AB is to CD , as EF to GH. If therefore four straight lines, \&cc. 'Q. E. D.

PROP. XXIII. THEOR.

seen. Hquiangular parallelograms have to one another the ratio which is compounded of the ratios of their sides.

Let AC, CF be equiangular parallelograms, having the angle BCD equal to the angle ECG: The ratio of the parallelogram $\Lambda \mathrm{C}$ to the parallelogram CF, is the same with the ratio which is compounded of the ratios of their sides.

Let $B C, C G$ be placed in a straight line; therefore DC and Book VT. CE are also in a straight line ${ }^{2}$; and complete the parallelogram $=14 . \mathrm{I}$. DG ; and taking any straight line K , make ${ }^{\mathrm{b}}$ as BC to $\mathrm{CG},{ }^{12}$. 0.0 so K to L; and as DC to CE, so make ${ }^{b} \mathrm{~L}$ to M : Therefore, the ratios of K to L ; and L to M , are the same with the ratios of the sides, viz. of BC to CG, and DC to CE. But the ratio of K to M is that which is said to se compounded ${ }^{c}$ of the ${ }^{\mathrm{c}} \mathrm{A}$. def. j . ratios of K to L , and L to M : Wherefore also K has to M the ratio compounded of the ratios of the sides: And because as BC to CG, so is the parallelogram AC to the parallelogram CH^{1}; but as $B C$ to $C G$, so is K to L; therefore K is ${ }^{\mathrm{c}}$ to L , as the parallelogram AC to the parallelogram CH : Again, because as DC to CE , so is the parallelogram CH to the parallelogram CF ; but as $D C$ to $C E$, so is L to M; wherefore L is e to M , as the paral-
 lelogram CH to the parallelogram CF : Therefore since it has been proved, that as K to L , so is the parallelogram AC to the parallelogram CH ; and as L to M , so the parallelogram CH to the parallelogram CF ; ex æqualif, K is to M , as the pa- 92.5 . rallelogram AC to the parallelogram CF : But K has to M the ratio which is compounded of the ratios of the sides; therefore also the parallelogram AC has to the parallelogram CF the ratio which is compounded of the ratios of the sides. Wherefore equiangular parallelograms, Sic. Q.E. D.

PROP. XXIV. THEOR.

THE parallelograms about the diameter of any see N . parallelogram, are similar to the whole, and to one another.

Let $A B C D$ be a parallelogram, of which the diameter is AC ; and EG, HK the parallelograms about the diameter : The parallelograms EG, HK are similar both to the whole parallelogram $A B C D$, and to one another.

Because 1C, GF are parallels, the angle ADC is equal ${ }^{3}$ to: 2?.1. the angle AGF: For the same reason, because BC, EF are paralle!s,

THEELEMENTS

Book VI.
い号 - 34. 1.
rallels, the angle ABC is equal to the angle AEF : And each of the angles $\mathrm{BCD}, \mathrm{EFG}$ is equal to the opposite angle DAB^{b}, and therefore are equal to one another, wherefore the parallelograms $A B C D, A E F G$ are equiangular: And because the angle $A B C$ is equal to the angle $A E F$, and the angle $B A C$ common to the two triangles $\mathrm{BAC}, \mathrm{EAF}$, they are equiangular to one another; therefore ${ }^{c}$ as AB to BC, so is AE to EF: And because the opposite sides of parallelograms are equal to one another ${ }^{\mathrm{b}}, \Lambda B^{d}$ is to $A D$, as $A E$ to $A G$; and $D C$ to CB as GF to FE ; and also CD to DA, as FG to GA: 'Therefore the sides of the parallelograms ABCD, AEFG about the equal angles are proportionals; and they are there-

4. 6. fore similar to one anothere : For the same reason the parallelogram ABCD is similar to the parallelogram FHCK. Wherefore each of the parallelograms GE, KH is similar to
${ }^{\text {f }}$ 8! 6. DB: But rectilineal figures which are similar to the same rectilineal figure are also similar to one another ${ }^{f}$; therefore the parallelogram GE is similar to KH. Wherefore the parallelograms, \&cc. Q. E. D.

'PROP. XXV. PROB.

See N. TO describe a rectilincal figure which shall be similar to one, and equal to another given rectilineal figure.

Let ABC be the given rectilineal figure, to which the figure to be described is required to be similar, and D that to which it must be equal. It is required to describe a rectilineal figure similar to $\triangle B C$, and equal to D.

Upon the straight line BC describe ${ }^{2}$ the parallelogram BE equal to the figure $\triangle B C$; also upon $C E$ describe ${ }^{\text {a }}$ the parallelogram CM equal to D, and having the angle FCE equal to the angle CBL: Therefore BC and CF are in a straight line ${ }^{b}$, as also LE and EM : Between BC and CF find a mean proportional GH, and upon GH described the rectilineal figure KGH similar and similarly situated to the figure ABC : 20. 6. And because BC is to GH as GH to CF , and if three straight lines be proportionals, as the first is to the third, so is ${ }^{c}$ the figure
figure upon the first to the similar and similarly described fir- Boo VI. sure upon the second; therefore as BC to CF , so is the rectilineal figure ABC to KGH : But as BC to CF , so is ${ }^{f}$ the pz-f 1.6 . rallelogram BE to the parallelogram EF: Therefore as the rectilineal figure ABC is to KGH , so is the parallelogram BE to the parallelogram EFs: and the rectilinear figure $A B C$ is 811.5.

equal to the parallelogram BE ; therefore the rectilincal figure $K \mathrm{KGH}$ is equal ${ }^{\mathrm{b}}$ to the parallelogram EF : But EF is equal ${ }^{2}{ }^{14} .5$, to the figure D ; wherefore also KGH is equal to D ; and it is similar to ABC . Therefore the rectilineal figure KGH has been described similar to the figure $A B C$, and equal to D. Which was to be done.

PROP. XXVI. THEOR.

IF two similar parallelograms have a common angre, and be similarly situated; they are about the came diameter.

Let the parallelograms $A B C D, A E F G$ be similar and similarly situated, and have the angle DAB common. ABCD and AEFG are about the same diameter.

For, if not, let, if possible, the parallelogram BD have its dameter AHC in a different straight line from AF, the diameter of the parallelogram EG, and let GF meet AHC in H ; and through H draw HK parallel to AD or BC : Therefore the parallelograms $\mathrm{ABCD}, \mathrm{AKHG}$ being about the same diameter, they are similar to one another ${ }^{2}$: Wherefore as $D A$ to $A B$, so is ${ }^{b} G A$ to $A K$:

Book VI. But because $A B C D$ and $A E F G$ are similar parallelograms, as $D A$ is to $A B$, so is $G A$ to $A E$; therefore ${ }^{c}$ as $G A$ to $A E$, so GA to AK; wherefore GA has the same ratio to each of the straight lines AE, AK; and consequently AK is equald to AE, the less to the greater, which is impossible: Therefore ABCD and AKHG are not about the same diameter ; wherefore ABCD and AEFG must be about the same diameter. Therefore if two similar, \&c. Q. E. D.
' To understand the three following propositions more ea' sily, it is to be observed,

- 1. That a parallelogram is said to be applied to a straight ' line, when it is described upon it as one of its sides. Ex. gr. ' the parallelogram AC is said to be applied to the straight 6 line AB .

6. But a parallelogram AE is said to be applied to a straight ' line $A B$, deficient by a parallelogram, when $A D$ the base of ' $A E$ is less than $A B$, and there' fore AE is less than the paral' lelogram AC described upon ${ }^{6} A B$ in the same angle, and ' between the same parallels, by ' the parallelogram DC; and
 ' DC is therefore called the ' defect of AE.
'3. And a parallelogram $A G$ is said to be applied to a 'straight line $A B$, exceeding by a parallelogram, when $A F$ ' the base of $A G$ is greater than $A B$, and therefore $A G$ ex' ceeds $A C$ the parallelogram described upon $A B$ in the same ' angle, and between the same parallels, by the parallelogram ' BG.'

PROP. XXVII. THEOR.

See N, DF all parallelograms applied to the same straight line, and deficient by parallelograms, similar and similarly situated to that which is described upon the half of the line; that which is applied to the half, and is similar to its defect, is the greatest.

Let $A B$ be a straight line divided into two equal parts in C, and let the parallelogram $A D$ be applied to the half $A C$, which is therefore deficient from the parallelogram upon the whole line $A B$ by the parallelogram $C E$ upon the other half

CB : Of all the parallelograms applied'to any other parts of Boor VI. $A B$, and deficient by parallelograms that are similar, and similarly situated to CE, AD is the greatest.

Let AF be any parellelogram applied to AK , any other part of AB than the half, so as to be deficient from the parallelogram upon the whole line $A B$ by the parallelogram $K H$ similar and similarly situated to $\mathrm{CE}: \mathrm{AD}$ is greater than AF .

First, let $A K$ the base of $A F$, be greater than $A C$ the half of $A B$; and because $C E$ is similar to the parallelogram KH, they are about the same diameter ${ }^{2}$: Draw their diameter DB , and complete the scheme: $\mathrm{Be}-$ cause the parallelogram $C F$ is equal ${ }^{\text {b }}$ to FE , and KH to both, therefore the whole CH is equal to the whole KE : But CH is equal c to CG , because the base AC is equal to the base CB ; therefore CG is equal to KE : To
 each of these add CF ; then the whole AF is equal to the gnomon CHL; Therefore CE, or the parallelogram AD , is greater than the parallelogram AF .

Next, let AK, the base of AF, be less than $A C$, and, the same construetion being made, the parallelogram DH is equal to DG^{c}, for HM is equal to MG^{d}, because BC is equal to CA ; wherefore DH is greater than LG: But DH is equal ${ }^{\text {b }}$ to DK ; therefore DK is greater than LG: To each of these add $A L$; then the whole AD is greater than the whole AF. Therefore, of all parallelograms applied, \&ic. Q. E. D.

Book VI.

PROP. XXVIII. PROB.

$\operatorname{Sec} \mathrm{N}$.

ToTHE ELEMENTS
a 10. 1.
18. 6. equal to a given rectilineal figure, and deficient by a parallelogram similar to a given parellelogram: But the given rectilineal figure to which the parallelogram to be applied is to be equal, must not be greater than the parallelogram applied to half of the given line, having its defect similar to the defect of that which is to be applied; that is, to the given parallclogram.

Let AB be the given straight line, and C the given rectilineal figure, to which the parallelogram to be applied is required to be equal, which figure must not be greater than the parallelogram applied to the half of the line having its defect from that upon the whole line similar to the defect of that which is to be applied; and let D be the parallelogram to which this defect is required to be similar. It is required to apply a parallelogram to the straight line $A B$, which shall be equal to the figure C , and be deficient from the parallelogram upon the wiole line by a parallelogram similar to D .

Divide $A B$ into two equal farts ${ }^{2}$ in the point E, and upon EB describe the parallelogran EBFG similar ${ }^{b}$ and similarly situated to D, and complete the parallelo-
 gram $A G$, which must. either be equal to C , or greater than it , by the determination : And if AG be squal to C , then what was required is already done: For, upon the straight line AB , the parallelogram AC is applied equal to the figure C , and deficient by the parallelogram EF similar to D: But, if AG be not equal to C, it is greater than it ; and EF is equal to AG ; therefore EF also is greater thanC. Makec the parallclogram KLMN equal to the excess of EF above C , and similar and similarly situated
to EF : Let KL be the homologous side to EG, and LM to Book VI. GF: and because EF is equal to C and KM together, EF is greater than KM ; therefore the stright line EG is greater than KL, and GF than ${ }^{\circ} \mathrm{LM}$: Make GX equal to LK, and GO equal to LM, and complete the parallelogram XGOP: Therefore XO is equal and similar to KM ; but KM is similar to EF ; wherefore also XO is similar to EF, and therefore XO and EF are about the same diametere : Let GPB be their ${ }^{\mathrm{e}} 26.6$. diameter, and complete the scheme: Then because EF is equal to C and KM together, and XO a part of the one is equal to KM a part of the other, the remainder, viz. the gnomon ERO, is equal to the remainder C: and because OR is equal f to XS , by adding SR to each, the whole CB is equal s 3. 1. to the whole XB: But XB is equal 5 to TE, because the base 836.1 . AE is equal to the base EB ; wherefore also TE is equal to OB ; Add XS to each, then the whole TS is equal to the whole, viz, to the gnomon ERO: But it has been proved that the gnomon ERO is equal to C , and therefore also TS is equal to C. Wherefore the parallelogram TS, equal to the given rectilineal figure C , is applied to the given straight line $A B$ deficient by the parallelogram $S R$, similar to the given one D, because SR is similar to EF ${ }^{\text {b }}$. Which was to be done. ${ }^{24}$. 6 .

PROP. XXIX. PROB:

TO a given straight line to apply a parallelogram see N. equal to a given rectilineal figure, exceeding by a parallelogram similar to another given.

Let AB be the given straight line, and C the given rectilineal figure to which theparallelogram to be applied is required to be equal, and D the parallelogram to which the excess of the one to be applied above that upon the given line is required to be similar. It is required to apply a parallelogram to the given straight line AB which shall be equal to the figure C , exceeding by a parallelogram similar to D .
Divide AB into two equal parts in the point E , and upon $: 18.6$. EB describe ${ }^{2}$ the parallelogram EL similar, and similarly situ-

Book VI. ated to D: And make ${ }^{b}$ the parallelogram GH equal to EL and C together, and similar, and similarly situated to D ; wherefore CH is'similar to ELc : Let KH be the side homologous to FL , and KG to FE : And because the parallelogram GH is greater than EL, therefore the side KH is greater than FL , and KG than FE : Produce FL and FE, and make FLM equal to KH , and FEN to KG , and complete the parallelogram MN . MN is therefore equal and similar to GH ; but GH is similar to EL; wherefore MN is similar to EL, and consequently EL and MN are about the

- 26. 6. same diameterd : Draw their diameter FX, and complete the scheme. Therefore, .since GH is equal to EL and C together, and that GH is equal

. 0 . to $\mathrm{MN} ; \mathrm{MN}$ is equal to EL and C: Take away the common part EL; then the remainder, viz. the gnomon NOL, is equal to C. And be-
- 36. 37. cause $A E$ is equal to $E B$, the parallelogram $A N$ is equal ${ }^{\text {c }}$ to

843. 844. the parallelogram $N B$, that is, to $\mathrm{BM}^{\text {f }}$. Add NO to each ; therefore the whole, viz. the parallelogram $A X$, is equal to the gnomon, NOL, But the gnomon NOL is equal to C ; therefore also AX is equal to C . Wherefore to the straight line $A B$ there is applied the parallelogram $A X$ equal to the given rectilineal C , excceding by the parallelogram PO , which is
-24. 6. similar to D , because PO is similar to EL . Which was to be done.

> PROP. XXX. PROB.

To cut a given straight line in extrene and mean
ratio.
Let' AB be the given straight line; it is required to cut it in extreme and mean ratio.

Upon $A B$ describe ${ }^{2}$ the square $B C$, and to $A C$ apply the $\underbrace{B o o k ~ V I . ~}$ parallelogram $C D$ equal to $B C$, exceeding by the figure $A D=46.1$. similar to $B C^{b}$: But $B C$ is a square, therefore also AD is a square; and because $B C$ is equal to $C D$, by taking the common part CE from each, the remainder BF is equal to the remainder AD : And these figures are equiangular, therefore their sides about the equal angles are reciprocally proportionalc: Wherefore, as FE to ED, so AE to EB : But FE is equal to $A C^{d}$, that is, to $A B$; and $E D$ is equal to AE : Therefore as $B A$ to $A E$, so is $A E$ to $E B$: But $A B$
 is greater than AE.; wherefore AE is greater than EB : Therefore the straight line AB is cut in e 14. 5. extreme and mean ratio in Ef. Which was to be done.
${ }^{\text {f }} 3$ def. 6

Otherwise,

Let $A B$ be the given straight line; it is required to cut it in extreme and mean ratio.

Divide $A B$ in the point C, so that the rectangle contained by $A B, B C$ be equal to the square of $A C:$: : 11. a Then, because the rectangle $A B, B C$ is $\bar{A} \quad \bar{C}$ equal to the square of $A C$, as $B A$ to $A C$, so is $A C$ to CB^{b} : Therefore AB is cut in extreme and mean ${ }^{\mathrm{E}} 17 . \dot{6}$. ratio in C^{i}. Which was to be done.

PROP. XXXI. THEOR.

IN right angled triangles, the rectilineal figure de- sec N scribed upon the side opposite to the right angle, is equal to the similar, and similarly described figures upon the sides containing the right angle.

Let $A B C$ ' be a right angled triangle, having the right angle BAC: The rectilineal figure described upon BC is equal to the similar, and similarly described figures upon BA, AC:

Draw the perpendicular AD ; therefore, because in the right ngled triangle $\mathrm{ABC}, \mathrm{AD}$ is drawn from the right angle at A erpendicular to the base BC , the triangles $\mathrm{ABD}, \mathrm{ADC}$ are imilar to the whole triangle $A B C$, and to one another r^{2}, and a s. 6.

Book V1. because the triangle ABC is similar to ADB , as CB to BA , so - 4. 6 . is $B A$ to $B D^{\circ}$; and because these three straight lines are proportionals, as the first to the third, so is the figure upon the first to the similar, and similarly described figure upon the
c 2 Cor.
20. 6. second ${ }^{\text {c }}$: Therefore as CB to $B D$, so "is the figure upon CB to the similar and similarly described figure upon

- B. 5. BA : And inversely ${ }^{\text {d }}$, as DB to $B C$, so is the figure upon BA to that upon BC: For the same reason, as DC to $C B$, so is the figure upon CA to that upon CB. Wherefore
 as BD and DC together to BC , so are the figures upon $B A$, AC to that upon BC^{e} : But BD and DC together are equal

[^4] to $B C$. Therefore the figure described on $B C$ is equal ${ }^{f}$ to the similar and similarly described figures on $B A, A C$. Wherefore, in right angled triangles, \&c. Q. E. D.

PROP. XXXII. THEOR.

See N. IF two triangles which have two sides of the one proportional to two sides of the other, be joined at one angle, so as to have their homologous sides parallel to one another; the remaining sides shall be in a straight line.

Let $\mathrm{ABC}, \mathrm{DCE}$, be two triangles which have the two sides BA, AC proportional to the two CD, DE, viz. BA to AC , as CD to DE ; and let $A B$ be parallel to $D C$, and $A C$ to $D E$; $B C$ and $C E$ are in a straight line.

Because $A B$ is parallel to DC, and the straight line AC meets them, the alternate angles $\mathrm{BAC}, \mathrm{ACD}$
29. 1. are equal ${ }^{2}$; for the same reason, the angle CDE is equal to the angle ACD ; wherefore also BAC is equal to CDE: And because

the triangles $\mathrm{ABC}, \mathrm{DCE}$ have one angle at A equal to one at Bpor Vr. D , and the sides about these angles proportionals, viz. BA to $A C$, as $C D$ to $D E$, the triangle $A B C$ is equiangular to $D C E$: 06 . 6 .
Therefore the angle $A B C$ is equal to the angle $D C E$: And the angle BAC was proved to be equal to ACD: Therefore the whole angle ACE is equal to the two angles $\mathrm{ABC}, \mathrm{BAC}$; add the common angle ACB , then the angles $\mathrm{ACE}, \mathrm{ACB}$ are equal to the angles $\mathrm{ABC}, \mathrm{BAC}, \mathrm{ACB}$: But $\mathrm{ABC}, \mathrm{BAC}$, ACB are equal to two right angles ${ }^{\text {c }}$; therefore also the angles c 33.1 . $\mathrm{ACE}, \mathrm{ACB}$ are equal to two right angles: And since at the point C, in the straight line $A C$, the two straight lines $B C$, CE, which are on the opposite sides of it, make the adjacent angles $\mathrm{ACE}, \mathrm{ACB}$ equal to two right angles; therefored ${ }^{\mathrm{d}} \mathrm{BC}^{d} 1+, 1$. and CE are in a straight line. Wherefore, if two triangles, \&c. Q. E. D.

PROP. XXXIII. THEOR.

IN circumferences; have the same ratio which the circumferences on which they stand have to one another : So also have the sectors:

Let $\mathrm{ABC}, \mathrm{DEF}$ be equal circles; and at their centres the angles BGC, EHF, and the angles BAC, EDF, at their circumferences ; as the circumference BC to the circumference EF , so is the angle BGC to the angle EHF, and the angle BAC to the angle EDF; and also the sector BGC to the seftor EHF.

Take any number of circumferences CK, KL, each equal to BC , and any number whatever FM, MN, each equal to EF : And join GK, GL, HM, HN. Because the circumferences $\mathrm{BC}, \mathrm{CK}, \mathrm{KL}$ are all equal, the angles BGC, CGK, KGL are also allequal2: Therefore what multiple soever the circum. ${ }^{2}$ 27. 3. ference BL is of the circumference BC, the same multiple is the angle BGL of the angle BGC: For the same reason, whatever multiple the circumference EN is of the circumference EF, the same multiple is the angle EHN of the angle EHF;

Book VI. And if the circumference BL be equal to the circumference
27.3 . EN , the angle BGL is also equal ${ }^{2}$ to the angle EHN ; and if the circumference BL be greater than EN, likewise the angle BGL is greater than EHN; and if less, less: There being then four magnitudes, the two circumferences $B C, E F$, and the two angles BGC, EHF ; of the circumference BC, and of the angle BGC, have been taken any equimultiples whatever, viz. the circumference BL, and the angle BGL; and of the circumference EF , and of the angle EHF , any equimultiples what-

ever, viz. the circumference EN, and the angle EHN: And it has been proved, that, if the circumference BL, be greater than EN , the angle BGL is greater than EHN ; and if equal, equal; and if less, less: As therefore the circumference BC

- 5. def. 5. to the circumference EF, so ${ }^{\text {b }}$ is the angle BGC to the angle EHF: But as the angle BGC is to the angle EHF, so is
c15.5. ' the angle BAC to the angle EDF; for each is double of
220.3. each ; Therefore, as the! circumference BC is to EF, so is the angle BGC to the angle EHF, and the angle BAC to the angle EDF.

Also, as the circumference BC to EF, so is the sector BGC to the sector EHF. Join BC, CK, and in the circumferences BC, CK take any points X, O, and join $\mathrm{BX}, \mathrm{XC}, \mathrm{CO}, \mathrm{OK}$: Then, because in the triangles GBC, GCK the two sides BG_{2} GC are equal to the two CG, GK, and that they contain
4.1. equal angles; the base BC is equal e to the base CK , and the triangle GBC to the triangle GCK : And because the circumference BC is equal to the circumference CK , the remaining part of the whole circumference of the circle $A B C$, is equal to the remaining part of the whole circumference of the same circle: Wherefore the angle BXC is equal to the angle COK^{2}; '11."def.3. and the segment $B X C$ is therefore similar to the segment $\mathrm{COK}^{\mathrm{f}}$;
and they are upon equal straight lines BC, CK : But similar Boor VI. segments of circles upon equal straight lines, are equals to one $\underbrace{}_{2 \neq 3}$ another: Therefore the segment BXC is equal to the segment COK : And the triangle BGC is equal to the triangle CGK ; therefore the whole, the sector BGC, is equal to the whole, the sector CGK: For the same reason, the séctor KGL is equal to each of the sectors BGC, CGK: In the same manner, the sectors EHF, FHM, MHN may be proved equal to one another: Therefore, what multiple soever the circumference BL is of the circumference BC, the same multiple is the sector BGL of the sector BGC:. For the same reason, whatever multiple the circumference EN is of EF, the same multiple is the sector EHN of the sector EHF : And if the circumference BL be

equal to EN , the sector BGL is equal to the sector EHN ; and if the circumference BL be greater than EN, the sector BGL is greater than the sector EHN; and if less, less : Since then, there are four magnitudes, the two circumferences BC, EF, and the two sectors BGC, EHF, and of the circumference $B C$, and sector $B G C$, the circumference BL and sector BGL are any equal multiples whatever; and of the circumference EF, and sector EHF, the circumference EN, and sector EHN, are any equimultiples whatever ; and that it has been proved, if the circumference BL be greater than EN, the sector BGL is greater than the sector EHN ; and if equal, equal ; and if less, less. Therefore, ${ }^{\text {b }}$ as the cir-b 5_{6} def. 5 . cumference BC is to the circumference EF , so is the sector BGC to the sector EHF. Wherefore, in equal circles, \&ic. Q. E. D.-

PROP. B. THEOR.

See N. IF an angle of a triangle be bisected by a straight line, which likewise cuts the base; the rectangle contained by the sides of the triangle is equal to the rectangle contained by the segments of the base, together with the square of the straight line bisecting the angle.

Let ABC be a triangle, and let the angle BAC be bisected by the straight line $A D$; the rectangle $B A, A C$ is equal to the rectangle BD, DC, together with the square of AD .

- 5.4.
- 21.3.
c 4.6.
${ }^{d} 16.6$.
e 3. 2 .
\$35.3.

Describe the circle ${ }^{\mathrm{a}} \mathrm{ACB}$ about the triangle, and produce AD to the circumference in E , and join EC: Then because the angle BAD is equal to the angle CAE, and the angle ABD to the angle ${ }^{\mathrm{b}} \mathrm{AEC}$, for they are in the samesegment; the triangles ABD , AEC , are equiangular to one another: Therefore as BA to AD, so is c EA to AC, and consequently the rectangle BA, AC is equald to the rectangle EA, AD,
 that is ${ }^{6}$ to the rectangle ED, DA, together with the square of AD ; But the rectangle ED, DA is equal to the rectanglef BD, DC. Therefore the rectangle BA, AC is equal to the rectangle BD, DC, together with the square of AD. Wherefore, if an angle, \&ic. Q. E. D.

PROP. C. THEOR.

See N. IF from any angle of a triangle a straight line be drawn perpendicular to the base; the rectangle contained by the sides of the triangle is equal to the rectangle contained by the perpendicular and the diameter of the circle described about the triangle.

Let $A B C$ be a triangle, and $A D$ the perpendicular from the angle A to the base $B C$; the rectangle $B A, A C$ is equal to the rectangle contained by $A D$, and the diameter of the circle described about the triangle.

Describe ${ }^{2}$ the circle ACB about the triangle, and draw its diameter AE , and join EC: Because the right angle BDA is equalb to the angle ECA in a semicircle, and the angle ABD to the angle AEC in the same segment ${ }^{\text {c }}$; the triangles $\mathrm{ABD}, \mathrm{AEC}$ are equiangular: Therefore as ${ }^{d} \mathrm{BA}$ to AD , so is EA to AC ; and consequently the rectangle BA, AC is equal C to the reet-
 angle EA, AD. If therefore from an angle, \&ic. Q. E. D.

PROP. D. THEOR.

THE rectangle contained by the diagonals of a see N. quadrilateral inscribed in a circle, is equal to both the rectangles contained by its opposite sides.

Let ABCD be any quadrilateral inscribed in a circle, and join AC, BD; the rectangle contained by AC, BD is equal to the two rectangles contained by AB, CD, and by AD, BC.

Make the angle ABE equal to the angle DBC ; add to each of these the common angle $E B D$, thien the angle $A B D$ is equal to the angle EBC: And the angle BDA is equal ${ }^{2}$ to the angle $B C E$, because they are in the same segment : therefore the triangle ABD is equiangular to the triangle BCE : Wherefore ${ }^{\mathrm{b}}$, as $B C$ is to CE , so is BD to DA; and consequently the rectangle BC , $A D$ is equal' to the rectangle $B D$, CE: Again, because the angle $A B E$ is equal to the angle $D B C$, and the angle ${ }^{2}$ BAE to the angle BDC , the triangle ABE is equiangular to the triangle BCD : As therefore BA to AE , so is BD to
 DC ; wherefore the rectangle BA, DC is equal to the rectangle BD, AE : But the rectangle BC, AD has been shewn equal to the rectangle BD, CE; therefore the whole rectangle AC , $B D^{d}$ is equal to the rectangle AB, DC, together with the rectangle AD, BC. Therefore the rectangle, \&c. Q. E. D.
*This is a Lemma of Cl. Ptolomaus, in pase 9 . of his $\mu \cdot \gamma \times \lambda y$ e:vra ξ^{\prime} s.

[188]

THE

ELEMENTS

OF

EUCLID.

BOOK. XI.

DEFINITIONS.

I.

$\underbrace{\text { Book XI. }} A^{\prime}$ SOLID is that which hath length, breadth, and thickness.
II.

That which bounds a solid is a superficies. III.

A straight line is perpendicular, or at right angles to a plane, when it makes right angles with every straight line meeting it in that plane.

IV.

A plane is perpendicular to a plane, when the straight lines drawn in one of the planes perpendicularly to the common section of the two planes, are perpendicular to the other plane.
V.-

The inclination of a straight line to a plane is the acute angle contained by that straight line, and another drawn from the point in which the first line meets the plane, to the point in which a perpendicular to the plane drawn from any point of the first line above the plane, meets the same plane.

VI.

The inclination of a plane to a plane is the acute angle contained by two straight lines drawn from any the same point of their common section at right angles to it, one upon one plane, and the other upon the other plane.

Two planes are said to have the same, or a like inclination to one another, which two other planes have, when the said angles of inclination are equal to one another.
VIII.

Parallel planes are such which do not meet one another though produced.
IX.

A solid angle is that which is made by the meeting of more ${ }_{\text {See }} \mathrm{N}$. than two plane angles, which are not in the same plane, in one point.

$$
\mathrm{X}
$$

* The tenthdefinition is omitted for reasonsgiven in the notes.' See \mathbb{N}.
XI.

Similar solid figures are such as have all their solid angles see N. equal, each to each, and which are contained by the same number of similar planes.

> XII.

A pyramid is a solid figure contained by planes that are constituted betwixt one plane and one point above it in which they meet.

XIII.

A prism is a solid figure contained by plare figures, of which two that are opposite are equal, similar, and parallel to one another : and the others parallelograms.
XIV.

A sphere is a solid figure described by the revolution of a semicircle about its diameter, which remains unmoved.
XV.

The axis of a sphere is the fixed straight line about which the semicircle revolves.
XVI.

The centre of a sphere is the same with that of the semicircle. XVII.

The diameter of a sphere is any straight line which passes through the centre, and is terminated both ways by the superficies of the sphere.

XVIII.

A cone is a solid figure described by the revolution of a right angled triangle about one of the sides containing the right angle, which side remains fixed.
If the fixed side be equal to the other side containing the right angle, the cone is called a right angled cone; if it be less than the other side, an obtuse angled, and if greater, an acute angled cone.

The axis of a cone is the fixed straight line about which the triangle revolves.
XX.

The base of a cone is the circle described by that side containing the tight angle, which revolves.
XXI.

A cylinder is a solid figure described by the revolution of a right angled parallelogram about one of its sides which remains fixed.

> XXII.

The axis of a cylinder is the fixed atraight line about which the parallelogram revolves.
XXIII.

The bases of a cylinder are the circles described by the two revolving opposite sides of the parallelogram. XXIV.

Similar cones and cylinders are those which have their axes and the diameters of their bases proportionals.
XXV.

A cube is a solid figure contained by six equal squares. XXVI.

A tetrahedron is a solid figure contained by four equal and equilateral triangles.

XXVII.

An octahedron is a solid figure contained by eight equal and equilateral triangles.

XXVIII.

A dodecahedron is a solid figure contained by twelve equal pentagons which are equilateral and equiangular.

XXIX.

An icosahedron is a solid figure contained by twenty equal and equilateral triangles.

> DEF. A.

A parallelopiped is a solid figure contained by six quadrilateral figures, whereof every opposite two are parallel.

PROP. I. THEOR.

ONE part of a straight line cannot be in a plane, see N . and another part above it.

If it be possible, let $A B$, part of the straight line $A B C$, be in the plane, and the part BC above it: And since the straight linc $A B$ is in the plane, it can be produced in that plane: Let it be propuced toD: And let any plane pass through the straight line AD, and be turned about it until it pass through the point C ;
 and because the points B, C are in this plane, the straight line $B C$ is in ita: Therefore there are two straight lines $A B C,{ }^{,} 7$ def 1 . ABD in the same plane that have a common segment AB , which is impossibleb. Therefore, one part, \&cc. Q. E. D. bCor. 11.1

PROP. II. THEOR.

' WO straight lines which cut one another are in one plane, and three straight lines which meet one another are in one plane.

Let two straight lines $A B, C D$, cut one another in $E ; A B$ ' CD are one plane: and three straight lines $\mathrm{EC}, \mathrm{CB}, \mathrm{BE}$, which mect one another are in one plane.

Let any plane pass through the straight line $E B$, and let the plane be turned about E.B, produced, if necessary, until it pass through the point C : Then because the points E, C are in this plane, the straight line EC is in it^{2} : For the same reason, the straight line BC is in the same; and, by the hypothesis, EB is in it: Therefore the three straight lines EC, CB, BE are in one plane: But in the plane in which EC, EB are, in the same
 are ${ }^{b} C D, A B$: Therefore $A B, C D$, are in one plane. Wherefore two straight lines, \&c. Q. E. D.

Book X.I.

THE ELEMENTS

PROP. III. THEOR.

See N. IF tivo planes cut one another, their common section is a straight line.

Let two planes $A B, \mid B C$, cut one another, and let the line DB be their common section: DB is a straight line: If it be not, from the point D to B, draw, in the plane $A B$, the straight line $D E B$, and in the plane $B C$, the straight line DFB: Then two straight lines DEB, DFB have the same extremities, and therefore include a space
${ }^{2} 10$ Ax. 1. betwixt them; which is impossible ${ }^{3}$: Therefore BD the common section of the planes AB, BC, cannot but be a
 straight line: Wherefore, if two planes, \&c. Q. E. D.

PROP.IV. THEOR.

Sece. I IF a straight line stand at right angles to each of two straight lines in the point of their intersection, it shall also be at right angles to the plane which passes through them, that is, to the plane in which they are.

Let the straight line EF stand at right angles to each of the straight lines $A B, C D$ in E, the point of their intersection: EF is also at right angles to the plane passing through AB, CD.

Take the straight lines $\mathrm{AE}, \mathrm{EB}, \mathrm{CE}, \mathrm{ED}$ all equal to oneanother; and through E draw, in the plane in which are AB, CD, any straight line GEH; and join AD, CB; then, from any point F in EF, draw FA, FG, FD, FC, FH, FB: And because the two straight lines AE, ED are equal to the two BE, EC,

- 15. 16.

-4. 1.
c 26.1. and that they contain equal angles ${ }^{2} A E D, B E C$, the base $A D$, is equal ${ }^{b}$ to the base BC , and the angle DAE to the angle EBC : And the angle AEG is equal to the angle BEH^{2}; therefore the triangles $\mathrm{AEG}, \mathrm{BEH}$ have two angles of one equal to two angles of the other, each to each, and the sides $A E, E B$, adjacent to the equal angles, equal to one another: wherefore they shall have their other sides equalc: GE is therefore equal
equal to EH , and AG to BH : and because AE is equal to Boos XI. EB , and FE common and at right angles to them, the base AF is equal ${ }^{\text {h }}$ to the base FB ; for the same reasen, CF is equal to 04.1. FD : And because AD is equal to BC , and AF to FB , the two sides FA, AD are equal to the two $F B, B C$, each to each; and the base DF was proved equal to the base FC ; therefore the angle $F A D$ is equal ${ }^{\text {a }}$ to the angle FBC : Again, it was proved that GA is equal to BH , and also AF to $\mathrm{FB} ; \mathrm{FA}_{\text {, then, }}$ and AG , are equal to FB and BH , and the angle FAG has been proved equal to the angle FBH ; therefore the base. GF is equal ${ }^{\mathrm{b}}$ to the base FH: Again, because it was proved, that GE is equal to EH , and EF is common; GE, EF are
 equal to HE, EF; and the base GF is equal to the base FH ; therefore the angle GEF is equald to the angle HEF; and consequently each of these angles is a right ${ }^{\text {e }}$ angle. Therefore FE makes right angles with $\mathrm{GH},{ }^{e} 10$ def. 1. that is, with any straight line drawn through E in the plane passing through AB, CD. In like manner, it may be proved, that FE makes right angles with every straight line which meets it in that plane. But a straight line is at right angles to a plane when it makes right angles with every straight line which meets it in that plane ${ }^{f}$: Therefore EF is at right an- 3 dof, 11 . gles to the plane in which are $A B, C D$. Wherefore, if a straight line, \&c. Q. E D.

PROP. V. THEOR.

IF three straight lines meet all in one point, and a see X. straight line stands at right angles to each of them in that point ; these three straight lines are in one and the same plane:

Let the straight line AB stand at right angles to each of the straight lines $\mathrm{BC}, \mathrm{BD}, \mathrm{BF}$, in B the point where they meet; $B C, B D, B E$, are in one and the same plane.

If not, let, if it be possible, BD and BE be in one plane, and $B C$ be above it ; and let a plane pass through $A B, B C$, the common section of which with the plane, in which $B D$

Book XI. 3.11 . and BE are, shall be a straight line; let this be BF: Therefore the three straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{BF}$, are all in one plane, viz. that which passes through AB, BC; and because AB
-4. 11. stands at right angles to each of the straight lines BD, BE, it
c 3 def. 11. and therefore makes right angles ${ }^{\text {c }}$ with every straight line meeting it in that plane; but BF which is in that plane meets it : Therefore the angle ABF is a right angle; but the angle ABC , by the hypothesis, is also a right angle; therefore the angle $A B F$ is equal to the angle $A B C$, and they are both in the same plane, which is impossible; Therefore the straight line BC is not above the plane in which are $B D$ and $B E$: Wherefore the three straight lines $\mathrm{BC}, \mathrm{BD}, \mathrm{BE}$ are in one and the same plane. Therefore, if three straight lines, \&c. Q. E. D.

PROP. VI. THEOR.

I
F two straight lines be at right angles to the same planc, they shall be parallel to one another.

Let the straight lines $A B, C D$ be at right angles to the same plane ; $A B$ is parallel to $C D$.

Let them meet the plane in the points $\mathrm{B} ; \mathrm{D}$, and draw the straight line BD , to which draw DE at right angles, in the same plane; and make $D E$ equal to $A B$, and join BE, AE, AD. Then, because $A B$ is perpendicular to the plane, it
43 def. 11. shall make right ${ }^{\text {a }}$ angles with every straight line which meets it, and is in that plane: But BD, BE, which are in that plane, do each of them meet AB . Therefore each of the angles ABD_{2} ABE is a right angle : For the same reason, each of the angles $\mathrm{CDl}, \mathrm{CDE}$ is a right angle: And becausc $A B$ is equal to $D E$, and $B D$ common, the two sides $A B, B D$ are equal to the two
 ED, DB; and they contain right angles; therefore the base 0 4. 1. AD is equal ${ }^{b}$ to the base BE : Again, because $A B$ is equal

OF EUCLID.

to $D E$, and $B E$ to $A D ; A B, B E$ are equal to $E D, D A$; and, $\underbrace{B o o s \text { XI. }}$ in the triangles $\mathrm{ABE}, \mathrm{EDA}$, the base AE is common: therefore the angle ABE is equalc to the angle EDA: But c8.1. ABF is a right angle : therefore EDA is also a right angle, and ED perpendicular to DA: But it is also perpendicular to each of the two ED, DC : Wherefore ED is at right angles to each of the three straight lines $\mathrm{BD}, \mathrm{DA}, \mathrm{DC}$ in the point in which they meet: Therefore these three straight lines are all in the same planed : But $A B$ is in the plane in which are $B D,{ }^{4} .11$. DA, because any three straight lines which meet one another are in one plane ${ }^{\text {: }}$ Therefore $\mathrm{AB}, \mathrm{BD}, \mathrm{DC}$ are in one plane: ${ }^{\circ} \ell .1$. And each of the angles $\mathrm{ABD}, \mathrm{BDC}$ is a right angle; therefore AB is parallel ${ }^{\mathrm{f}}$ to CD . Wherefore, if two straight lines, \&ac. ${ }^{\mathrm{f}} \mathrm{z}$. 2. Q. E. D.

PROP. VII. THEOR.

IF two straight lines be parallel, the straight line see X. '" drawn from any point in the one to any point in the other, is in the same plane with the parallels.

Let $A B, C D$ be parallel straight lines, and take any point E in, the one, and the point F in the other: The straight line which joins E and F is in the same plane with the parallels.

If not, let it be, if possible, above the plane, as EGF; and in the plane $A B C D$ in which the parallels are, dras the straight line EHF from E to F; and since EGF also is a straight line, the two straight lines EHF, EGF include a space between them, which is impossible ${ }^{2}$. Therefore the straight line joining the
 points E, F is not above the plane in which the parallels $A B, C D$ are, and is therefore in that plane. Wherefore, if two straight lines, \&ic. Q. E. D.

PROP. VIII. THEOR.

IF two straight lines be parallel, and one of them see ix. is at right angles to a plane; the other also shall be at right angles to the same plane

THE ELEMENTS

BoairyI. Let $A B, C D$ be two parallel straight lines, and let one of them AB be at right angles to a plane; the other CD is at right angles to the same plane.

Let $A B, C D$ meet the plane in the points B, D, and join BD : 'Therefore: $\mathrm{AB}, \mathrm{CD}, \mathrm{BD}$ are in one plane. In the plane to which $A B$ is at right angles, draw $D E$ at right angles to $B D$, and make $D E$ equal to $A B$, and join $B E, A E, A D$. And because $A B$ is perpendicular tn the plane, it is perpendicular to every straight line which meets it, and is in that
2 3. def.11. plane ${ }^{2}$: 'Therefore each of the angles $\mathrm{ABD}, \mathrm{ABE}$, is a right angle: And because the straight line BD meets the parallel straight lines AB, CD, the angles $\mathrm{ABD}, \mathrm{CDB}$ are"together aqual to two right angles: And ABD is a right angle; therefore also CDB is a right angle, and CD perpendicular to BD : And because AB is equal to DE , and BD common, the two AB, BD are equal to the two ED , DB , and the angle ABD is equal to the angle EDB, because each of them is a right angle; therefore the base $A D$ is equal c to the base BE: Again, because $A B$ is equal to $D E$, and $B E$ to AD ; the two AB, BE, are equal to the two ED, DA; and the base AE is common to the triangles $\mathrm{ABE}, \mathrm{EDA}$; d8.1. wherefore the angle ABE is equal ${ }^{d}$ to the angle EDA: And ABE is a right angle; and therefore EDA is a right angle, and ED perpendicular to DA:
 But it is also perpendicular to BD ; therefore ED is perpen-
-4. 11.
${ }^{5} 3$ def. 11. diculare to the plane which passes through $\mathrm{BD}, \mathrm{D} A$, and shall ${ }^{i}$ make right angles with every straight line meeting it in that plane: But DC is in the plane passing through BD, DA, because all three are in the plane in which are the parallels $A B$, CD :- Wherefore ED is at right angles to DC ; and therefore $\widehat{\mathrm{CD}}$ is at right argles to $\mathrm{DE}:$ But CD is also at right angles to $\mathrm{DB} ; \mathrm{CD}$ then is at right angles to the two straight lines DE, DB in the point of their intersection D : and therefore is at right anglese to the plane passing through DE, DB, which is the same plane to which $A B$ is at right angles. Therefore, if two straight lines, \& C. Q.E. D.

OFEUCLID.

PROP. IX. THEOR.
TWO straight lines which are eacl of them parallel to the same straight line, and not in the same plane with it, are parallel to one another.

Let $A B, C D$, be each of them parallel to $E F$, and not in the same plane with it; $A B$ shall be parallel to $C D$.

In EF take any point G, from which draw, in the plane passing through EF, AB, the straight line GH at right angles to $E F$; and in the plane passing through EF, CD, draw GK atrightangles to the same EF. And because EF is perpendicular both. to Gil and GK, EF is perpendicular ${ }^{2}$ to the plane HGK passing through them: and EF is parallel to $A B$; therefore $A B$ is at right angles ${ }^{b}$ to the plane HGK. For the same reason, CD is likewise at right angles to the plane HGK..

Therefore $A B, C D$ are each of them at right angles to the plane HGK . But if two straight lines are at right angles to the same plane, they shall be parallel' to one another. There- $=6.11$. fore $A B$ is parallel to $C D$. Wherefore, two straight lines, \&ic. Q.E.D.

PROP. X. THEOR.

IF two straight lines meeting one another be parallel to two others that meet one another, and are not in the same plane with the first two; the first two and the other two shall contain equal angles.

Let the two straight lines AB, BC, which meet one another, be parallel to the two straight lines DE, EF that meet one another, and are not in the same plane with AB, BC. The angle $A B C$ is equal to the angle DEF.

Take $B A, B C, E D, E F$ all equal to one another; and join

Boor XI. AD, CF, BE, AC, DF : Because BA is equal and parallel to
-35. 1. $E D$, therefore $A D$ is ${ }^{2}$ both equal and parallel to BE. For the same reason, CF is equal and parallel to BE . Therefore $A D$ and $C F$ are each of them equal and parallel to BE. But straight lines that are parallel to the same straight line, and not in the same plane with it,
-9.11. are parallel ${ }^{\text {b }}$ to one another. Therefore
c1. Ax. 1. AD is parallel to CF ; and it is equale to it, and AC, DF join them towards the same parts; and therefore ${ }^{2} A C$ is equal and parallel to DF. And be-
 cause AB, BC are equal to DE, EF, and the base AC to the
©. 8. 1. base DF ; the angle ABC is equald to the angle DEF . Therefore, if two straight lines, \&c. Q. E. D.

PROP, XI. PROB.

Todraw a straight line perpendicular to a plane, from a given point above it.

Let A be the given point above the plane BH ; it is required to draw from the point A a straight line perpendicular to the plane BH .

In the plane draw any straight line $B C$, and from the point
812. 1. A draw a AD perpendicular to BC . If then AD be also perpendicular to the plane BH , the thing required is already done ; but if it be not, from the
-11. 1. point D draw ${ }^{\mathrm{b}}$, in the plane BH , the straight line DE , at right angles to BC ; and from the point A draw AF perpendicular to
c31. 1. DE ; and through F draw ${ }^{c} \mathrm{GH}$ parallel to BC: And because BC is at right angles to ED and DA,
4. 11. $B C$ is at right angles ${ }^{d}$ oo the plane passing through ED, DA. And GH is parallel to BC; but, if
 two straight lines be parallel, one of which is at right angles to

- 8. 11. a plane, the other shall be at right ${ }^{c}$ angles to the same plane; wherefore GH is at right angles to the plane through ED, DA,
${ }^{2} 3$ def. 11. and is perpendicular f to every straight line meeting it in that plane, But AF, which is in the plane through ED, $A D$, meets
it: Therefore GH is perpendicular to AF ; and consequently Book KI . AF is perpendicular to GH ; and AF is perpendicular to DE : Therefore AF is perpendicular to each of the straight lines GH , DE. But if a straight line stands at right angles to each of two straight lines in the point of their intersection, it sha! also be at right angles to the plane passing through them. But the plane passing through ED, GH is the plane BH ; therefore AF is perpendicular to the plane BH ; therefore, from the given point A , above the plane BH , the straight line AF is drawn perpendicular to that plane: Which was to be done.

PROP. XII. PROB.

To erect a straight line at right angles to a giveru plane, from a point given in the plane.
I.et A be the point given in the plane; it is required rect a straight line from the point A at right angles to the plane.

From any point B above the plane draw ${ }^{2} \mathrm{BC}$ perpendicular to it; and from A draw' AD parallel to BC . Because, therefore, AD, CB are two parallel straight lines, and one of them $B C$ is at right angles to the given plane, the other AD is also at right angles to
 itc. Therefore a straight line has been erected at right angles :8,11. to a given plane from a point given in it. Which was to be done.

PROP. XIII. THEOR.

From the same pointin a given plane, there cannot be two straight lines at right angles to the plane, upon the same side of it; and there can be but one perpendicular to a plane from a point above the plane.

For, if it be possible, let the two straight lines $A B, A C$, be at right angles to a given plane from the same point A in the plane, and upon the same side of it; and let a plane pass through $B A, A C$; the common section of this with the given plane is 2

BOOX XI.
23.11
23. 11.
straight ${ }^{2}$ line passing through A: Let DAE be their common section: Therefore the straight linès $A B, A C, D A E$ are in one plane: And because $\mathrm{C} A$ is at right angles to the given plane, it shall make right angles with every
straight line meeting it in that plane. But DAE, which is in that plane, meets CA; therefore CAE is a right angle. For the same reason BAE is a right angle. Wherefore the angle CAE is equal to the angle BAE; and they are in one plane,
 which is impossible. Also, from a point above a plane, there can be but one perpendicular to that plane; for, if there could be two, they would be parallel ${ }^{b}$ to one another, which is absurd. Therefore, from the same point, \&c. Q. E. D.

PROP. XIV. THEOR.

PLanes to which the same straight line is perpendicular, are parallcl to one another.

Let the straight line $A B$ be perpendicular to each of the planes CD, EF; these planes are parallel to one another.

If not, they shall meet one another when produced; let them meet ; their common section shall be a straight line GH, in which take any point K , and join $A K$, $B K$: Then, because AB is perpendicular to the : 3 def. 11. plane EF, it is perpendicular ${ }^{2}$ to the straight line $B K$ which is in that plane. Therefore ABK is a right angle. For the same reason BAK is a right angle; wherefore the two angles $\mathrm{ABK}, \mathrm{Bi} \mathrm{K}$ of the triangle $\triangle B K$ are equal to two -17. 1. right. angles, which is impossible ${ }^{\text {b }}$: Therefore the planes CD, EF, though produced, do not meet one another ; es ief. 11, that is, they are parallele. There-
 fore planes, \& \&c. Q. E. D.

PROP. XV. THEOR.

IF two straight lines meeting one another, be pa- sce N. rallel to two straight lines which mect one another, but are not in the same plane with the first two ; the plane which passes through these is parallel to the plane passing through the others.

Let AB, BC, two straight lines meeting one another, be parallel to $D E, E F$ that meet one another, but are not in the same plane with AB, BC : The planes through AB, BC, and $D E, E F$ shall not meet, though produced.

From the point B draw $B G$ perpendicular ${ }^{2}$ to the plane ${ }^{2} 11.11$. which passes through DE, EF, and let it meet that plane in G ; and through G draw GH parallel ${ }^{\mathrm{b}}$ to ED , and GK^{b} 51. 1. parallel to EF: And because $B G$ is perpendicular to the plane through DE, EF, it shall make right angles with every straight line meeting it in that plane ${ }^{c}$. But the straight lines GH, GK in that plane meet it: Therefore each of the angles $\mathrm{BGH}, \mathrm{BGK}$ is a right angle: And because $B A$ is paralleld to GH (for each of them is parallel to DE, and
 they are not both in the same plane with it) the angles GBA, BGH are together equale to two right angles: And BGH is ${ }^{\text {e } 29.1 .}$ a right angle ; therefore also GBA is a right angle, and GB perpendicular to BA : For the same reason, GB is perpendicular to BC : Since therefore the straight line GB stands at right angles to the two straight lines BA, BC, that cut one another in $B ; G B$ is perpendicular to the plane through $B A$, 4 . 11. BC : And it is perpendicular to the plane through DE, EF; therefore $B G$ is perpendicular to each of the planes through $A B$, $B C$, and $D E, E F$: But planes to which the same straight line is perpendicular, are parallels to one another: Therefore the 8 kt .11 . plane through $A B, B C$ is parallel to the plane through $D E$, EF. Wherefore if two straight lines, \&ic. Q. E. D.

Book XY.

PROP. XVI. THEOR.

See N. IF two parallel planes be cut by another plane, their common sections with it are parallels.

Let the parallel planes, AB, CD be cut by the plane EFHG, and let their common sections with it be EF, GH: EF is parallel to GH.

For, if it is not, EF, GH shall meet, if produced, either on the side of FH, or EG: First, let them be produced on the side of FH, and meet in the point K : 'Therefore, since EFK is in the plane $A B$, every point in EFK is in that plane ; and K is a point in EFK; therefore K is in the plane $A B:$ For the same reason K is also in the plane CD : Wherefore the planes, $A B, C D$, produced meet one another; but they do not meet, since they are parallel by the hypothesis : Therefore the straight lines
 EF, GH do 'not meet' when produced on the side of FH : In the same manner it may be proved, that EF, GH do not meet when produced on the side of EG : But straight lines which are in the same plane, and do not meet, though produced either way, are parallel : Therefore EF is parallel to GH. Whercfore, if two parallel planes, \&ic. Q. E. D.

PROP. XVII. .THEOR.

IF woostristht linas be cut by paralle phane they shall be cut in the same ratio.

Let the straight lines AB, CD be cut by the parallel planes $\mathrm{GH}, \mathrm{KL}, \mathrm{MN}$, in the points $\mathrm{A}, \mathrm{E}, \mathrm{B} ; \mathrm{C}, \mathrm{F}, \mathrm{D}: \mathrm{Ass} \mathrm{AE}$ to EB , so is CF to FD.

Join $A C, B D, A D$, and let $A D$ meet the plane KL in the point X: and join EX, XF: Because the two parallel planes KL, MN are cut by the plane EBDX, the common sections

EX, BD are parallel ${ }^{2}$. For the same reason, because the two Boos MI parallel planes GH, KL are cut by the plane AXFC, the common sections AC, XF are parallel : And because EX is parallel to BD , a side of the triangle ABD , as AE to EB , so is A X to XD . Again, because XF is parallel to $A C$, a side of the triangle $A D C$, as $A X$ to $X D$, so is CF to FD: And it was proved that AX is to XD, as AE to EB: Thereforec, as AE to EB, so is CF to FD. Wherefore, if two straightlines,
 \&ic. Q. E. D.

PROP. XVIII. THEOR

IF a straight line be at right angles to a plane, every plane which passes through it shall be at right angles to that plane.

Let the straight line AB be at right angles to a plane CK ; every plane which passes thro: gh $A B$ shall be at right angles to the plane CF.

Let any plane $D E$ pass through $A B$, and let $C E$ be the common section of the 'planes DE, CK; take any point F in CE , from which draw FG in the plane $D E$ at right angles to CE : And because AB is perpendicular to the plane CK , therefore it is also perpendicular to every straight line in that plane meeting it^{2} : And consequently it is perpendicular to CE: Wherefore ABF is a right angle; But GFB is
 3 def. 11. likewise a right angle; therefore $A B$ is parallel ${ }^{b}$ to $F G$. And ${ }_{b}$ 28.1. AB is at right angles to the plane CK ; therefore FG is also at right angles to the same planec. But one plane is at right an- c8.11. gles to another plane when the straight lines drawn in one of the planes, at right angles to their common section, are also at right

Book XI.
64 def. 11 . angles to the other plane ; and any straight line FG in the plane DE, which is at right angles to CE the common section of the planes, has been proved to be perpendicular to the other plane CK ; therefore the plane DE is at right angles to the plane CK. In like manner, it may be proved thât all the planes which pass through $A B$ are at-right angles to the plane CK. Therefore, if a straight line, \&c. Q. E. D.

PROP. XIXX. THEOR.

IF two planes cutting one another be each of them perpendicular to a third plane; their common section shall be perpendicular to the same plane.

Let the two planes $A B, B C$ be each of them perpendicular to a third plane, and let BD be the common section of the first two ; BD is perpendicular to the third plane.

If it be not, from the point D draw, in the plane $A B$, the straight line $D E$ at right angles to $A D$ the common section of the plane $A B$ with the third plane; and in the plane $B C$ draw DF at right angles to CD the common section of the plane BC with the third'plane. And because the plane $A B$ is perpendicular to the third plane, and DE is drawn in the plane AB at right angles to AD their common section, DE is perpendicular to
24 def. 11. the third planc ${ }^{2}$. In the same manner, it may be proved that DF is perpendicular to the third plane. Wherefore, from the point D two straight lines stand at right angles to the third plane, 'upon the same side of it, which
-13. 11. is impossible ${ }^{\text {b }}$: Therefore, from the point D there cannot be any straight
 line at right angles to the third plane, except $B D$ the common section of the planes $A B, B C$. $B D$ therefore is perpendicular to the third plane. Wherefore, if two planes, \&cc. Q. E. D.

PROP. XX. THEOR.

IF a solid angle be contained by three plane an-'See N. gles, any two of them are greater than the third.

Let the solid angle at A be contained by the three plane angles, $\mathrm{BAC}, \mathrm{CAD}, \mathrm{DAB}$. Any two of them are greater than the third.

If the angles $\mathrm{BAC}, \mathrm{CAD}, \mathrm{DAB}$ be all equal, it is erident that any two of them are greater than the third. But if they are not, let BAC be that angle which is not less than either of the other two, and is greater than one of them DAB; and at the point A in the straight line AB , make, in the plane which passes through BA, AC, the angle BAE equal ${ }^{2}$ to the angle a 2.1 . DAB ; and make AE equal to AD , and through E draw $B E C$ cutting $A B, A C$ in the points B, C, and join $D B, D C$. And because $D A$ is equal to $A E$, and $A B$ is common, the two DA, AB are equal to the two EA, AB , and the angle DAB is equal to the angle EAB : Therefore the base $D \bar{B}$ is equal to the base BE. And because BD, DC are greater ${ }^{c}$ than CB , and one of
 them BD has been proved equal to BE a part of CB , therefore the other DC is greater than the remaining part EC. And because DA is equal to AE , and AC common, but the base DC greater, than the base EC ; therefore the angle DAC is greaterd ${ }^{\circ}$ 25. 1. than the angle EAC; and, by the construction, the angle DAB is equal to the angle BAE ; ${ }^{\circ}$ wherefore the angles $\mathrm{DAB}, \mathrm{DAC}$ are together greater than $\mathrm{BAE}, \mathrm{EAC}$, that is, than the angle $B A C$. But BAC is not less than either of the angles DAB, $D A C$; therefore $B A C$, with either of them, is greater than the other. Wherefore if a solid angle, \&ic. Q.E. D.

PROP. XXI. THEOR.

Every solid angle is contained by plane angles, which together are less than four right angles.

First, Let the solid angle at A be contained by three plane angles $\mathrm{BAC}, \mathrm{CAD}, \mathrm{DAB}$. These three together are less than four right angles.

Take in each of the straight lines $A B, A C, A D$ any points B, C, D, and join $B C, C D, D B$: Then, because the solid angle at B is contained by the three plane angles $C B A, A B D, D B G$, any two of them are greater ${ }^{a}$ than the third; therefore the angles $C B A, A B D$ are greater than the angle $D B C$: For the same reason, the angles $B C A, A C D$ are greater than the angle DCB ; and the angles $\mathrm{CDA}, \mathrm{ADR}$ greater than BDC : Wherefore the six angles CBA, $A B D, B C A, A C D, C D A, A D B$ are greater than the three angles DBC , $\mathrm{BCD}, \mathrm{CDB}$: But the three angles $D B C, B C D, C D B$ are equal to two
-32. 1. right angles ${ }^{\text {b }}$: Therefore the six angles CBA, $\mathrm{ABD}, \mathrm{BCA}, \mathrm{ACD},{ }^{\circ} \mathrm{CD}$, ADB are greater than two right angles: And because the three angles of each of the triangles $\triangle \mathrm{BC}, \cdot \mathrm{ACD}, \mathrm{ADB}$ are
 equal to two right angles, therefore the nine angles of these three triangles, viz. the angles CBA , $B A C, A C B, A C D, C D A, D A C, A D B, D B A, B A D$ are equal to six right angles: Of these the six angles CBA, $\mathrm{ACB}, \mathrm{ACD}, \mathrm{CDA}, \mathrm{ADB}, \mathrm{DBA}$ are greater than two right angles: Therefore the remaining three angles BAC, DAC, $B A D$, which contain the solid angle at A, are less than four right angles.

Next, Lat the solid angle at A be contained by any number of plane angles BAC, CAD, DAF, EAF, FAB : these together are less than four right angles.

Let the planes in which the angles are, be cut by a plane, and let the common sections of it with those planes be BC, CD, DE, EF, FB : And because the solid angle at B is contained by three plane angles $\mathrm{CBA}, \mathrm{ABF}$, FBC, of which any two are greater ${ }^{3}$ than the third, the angles CBA, ABF are greater than the angle FBC: for the same reason, the two plane angles at each of the points C, D, E, F, viz. the angles which are at the bases of the triangles having the common vertex A, are greater than the third angle at the same point, which is one of the an-
 gles of the polygon BCDEF: Therefore all the angles at the bases of the triangles are together
greater than all the angles of the polygon: And because all the Boos MI. angles of the triangles are together equal to twice as many right angles as there are triangles ${ }^{\text {b }}$; that is, as there are sides $\quad 32.1$. in the polygon BCDEF; and that all the angles of the polygon, together with four right angles, are likewise equal to twice as many right angles as there are sides in the polygonc ${ }^{c}$ c 1. Cor. therefore all the angles of the triangles are equal to all the angles of the polygon together with four rightangles. But all the angles at the bases of the triangles are greater than all the angles of the polygon, as has been proved. Wherefore the remaining angles of the triangles, viz. those at the vertex, which contain the solid angle at A , are less than four right angles. Therefore every solid angle, \&cc. Q. E. D.

PROP. XXII. THEOR.

IF every two of three plane angles be greater than swe N. the third, and if the straight lines which contain them be all equal; a triangle may be made of the straight lines that join the extremities of those equal straight lines.

Let $\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}$ be three plane angles, whereof every two are greater than the third, and are contained by the equal straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}, \mathrm{HK}$; if their extremities be joined by the straight lines $\mathrm{AC}, \mathrm{DF}, \mathrm{GK}$, a triangle may be made of three straight lines equal to AC, DF, GK ; that is, every two of them are together greater than the third.

If the angles at $\mathrm{B}, \mathrm{E}, \mathrm{H}$, are equal, $\mathrm{AC}, \mathrm{DF}, \mathrm{GK}$ are also equal ${ }^{2}$ and any two of them greater than the third: But if ${ }^{24.1 .}$ the angles are not all equal, let the angle $A B C$ be not less than either of the two at E, H; therefore the straight line AC is not less than either of the other two DF, GK^{D}; and it is ${ }^{\circ} 4$. Cor. plain that AC , together with either of the other two, must be 24.1 . greater than the third: Also DF with GK are greater than $A C$: For, at the point B, in the straight line $A B$, make ${ }^{\mathrm{c}}$ the c 23.1 .

THE ELEMENTS

Book XI. angle ABL equal to the angle GHK, and make BL equal to one of the straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}, \mathrm{HK}$, and join $A L$, LC ; Then, because AB, BL are equal to GH, HK, and the angle $A B L$ to the angle GHK, the base AL is equal to the base GK : And because the angles at E, H are greater than. the angle $A B C$, of which the angle at H is equal to $A B L$, therefore the remaining angle at E , is greater than the angle LBC :

And because the two sides LB, BC are equal to the two DE , EF , and that the angle DEF is greater than the angle LBC, the base DF is greater ${ }^{\text {d }}$ than the base LC: And it has been proved that GK is equal to AL; therefore DF and GK are greater than AL and LC: But AL and LC are greatere than AC; much more then are DF and GK greater than AC. Wherefore every two of these straight lines AC, DF, GK are greater than the
F22.1. third; and, therefore, a triangle may be madef, the sides of which shall be equal to $\mathrm{AC}, \mathrm{J}) \mathrm{F}, \mathrm{GK}$. Q. E. D.

PROP. XXIII. PROB.

See N.

TO make a solid angle which shall be contained by three given plane angles, any two of them being greater than the third, and all three together less than four right angles.

Let the three given plane angles be $\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}$, any two of which are greater than the third, and all of them together less then four right angles. It is required to make a solid angle contained by thrce plane angles equal to $A B C$, DEF, GHK, each to each.

OF EUCLID.

From the straight lines containing the angles, cut off AB ; Boox XI. $\mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}, \mathrm{HK}$, all equal to one another; and join $A C, D F, G K$: Then a triangle may be made ${ }^{2}$ of three straight 222.11 .

lines equal to $\mathrm{AC}, \mathrm{DF}, \mathrm{GK}$. Let this. be the triangle $L M N{ }^{\mathrm{b}}$, so that AC be equal to LM, DF to MN , and $G \mathrm{G}$ b 22. 1. to LN; and about the triangle LMN describe ${ }^{\text {c }}$ a circle, and c 5. 4. find its centre X , which will either be within the triangle, or in one of its sides, or without it.

First, Let the centre X be within the triangle, and join $\mathrm{LX}, \mathrm{MX}, \mathrm{NX}: \mathrm{AB}$ is greater than LX : If not, AB must either be equal to, or less than LX ; first, let be equal: Then because AB is equal to LX , and that AB is also equal to BC , and LX to XM, AB and BC are equal to LX and XM , each to each; and the base AC is by construction, equal to the base LM ; wherefore the angle ABC is equal to the angle LXMd. For the same reason, the angle DEF is equal to the \& 8.1. angle MXN, and the angle GHK to the angle NXL: Therefore the three angles $\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}$ are equal to the three angles LXM, MXN, NXL: But the three angles LXM, MXN, NXL are equal to four right anglese; therefore also the three angles ABC, DEF, GHK are equal to four right angles: But, by the hypothesis, they are less than four right angles, which is absurd; therefore $A B$ is not equal
 \therefore LX: But neither can AB be ess than LX: For, if possible, let it be less, and upon the traight line LM, on the side of it on which is the centre X , lescribe the triangle LOM, the sides LO, OM of which are qual to $A B, B C$; and because the base LM is equal to the

THE ELEMENTS

Boox XI. based $A C$, the angle LOM is equal to the angle $A B C^{d}$: And
© 8. 1. $A B$, that is, $L O$, by the hypothesis, is less than $L X$; wherefore LO, OM fall within the triangle LXM; for, if they fell upon its sides, or without it, they would be equal to or greater than
s 21. 1. LX, XM ${ }^{f}$: Therefore the angle LOM , that is, the angle $A B C$, is greater than the angle LXM ${ }^{f}$: In the same manner it may be proved that the angle DEF is greater than the angle MXN , and the angle GHK greater than the angle NXL. Therefore the three angles $A B C$, DEF, GHK are greater than the three angles LXM, MXN, NXL; that is, than four right angles : But the same angles $\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}$ are less than four right angles; which is absurd: Therefore $A B$ is not less than LX, and it has been proved that it is not equal to LX; wherefore $A B$ is greater than $L X$.

Next, Let the centre X of the circle fall in one of the sides of the triangle, viz. in MN, and join XL: In this case also $A B$ is greater than LX . If not, AB is either equal to XL , or less than it: First, let it be equal to XL: Therefore $A B$ and $B C$, that is, $D E$, and $E F$, are equal to $M X$ and $X L$, that is, toMN: But, by the construction, MN is equal to DF ; therefore DE, EF are equal to DF, which is impossiblet: Wherefore $A B$ is not equal to $L X$; nor is it less; for then, much more, an absurdity would
 follow: Therefore $A B$ is greater than LX.

But, let the centre X of the circle fall without the triangle LMN, and join LX, MX, NX. In this case likewise AB is greater than LX: If not, it is either equal to, or less than LX : First, let it be equal ; it may be proved in the same manner, as in the first case, that the angle $A B C$ is equal to the angle MXL, and GHK to LXN; therefore the whole angle MXN is equal to the two angles, $A B C, G H K$: But $A B C$ and GHK are together greater than the angle DEF ; therefore also the angle MXN is greater than DEF. And because DE,

EF are equal to MX, XN, and the base DF to the base Boox XI. MN, the angle MXN is equal to the angle DEF : And it has © 8. 1. been proved, that it is greater than DEF, which is absurd. Therefore $A B$ is not equal to LX. Nor yet is it less; for then, as has been proved in the first case, the angle $A B C$ is greater than the angle MXL, and the angle GHK greater than the angle LXN . At the point B , in the straight line CB , make the angle $C B P$ equal to the angle $G H K$, and make $B P$ equal to

HK , and join CP, AP. And because CB is equal to GH; CB, BP are equal to GH, HK, each to each, and they contain equal angles; wherefore the base CP is equal to the base GK, that is, to LN. And in the isosceles triangles ABC, MXL, because the angle ABC is greater than the angle MXL, therefore the angle MLX at the base is greaters than the angle $: 32$ ACBat the base. For the same reason, because the angle GHK, or CBP, is greater than the angle LXN, the angle XLN is greater than the angle BP. Therefore the whole angle MLX is greater than the whole angle ACP. And because ML, LN are equal to AC, CP, each to each, but the angle MLN is greater than the angle ACP, the base MN is greater ${ }^{\mathrm{h}}$ than the base AP. And MN is equal to DF ; therefore also DF is greater than AP. Again, because DE, EF are equal to $A B, B P$, but the base $D F$ greater than the base AP, the angle DEF is greater ${ }^{k}$ than the angle
 $A B P$. And $A B P$ is equal to the two angles $A B C, C B=$, that is, to the two angles $A B C, G H K$; therefore the angle DEF is greater than the two angles $A B C, G H K$; but it is also less than these, which is impossible. Therefore $A B$ is not less than

THE ELEMENTS

Book XI. LX, and it has been proved that it is not equal to it ; there: fore $A B$ is greater than $L X$.
2 12. 11.
From the point X erect $^{\mathbf{a}} \mathrm{XR}$ at right angles to the plane of the circle LMN. And because it has been proved in all the cases, that AB is greater than LX , find a square equal to the excess of the square of $A B$ above the square of LX , and make RX equal to its side, and join RL, RM, RN. Because RX is perpendicular to the plane of the circle LMN, it
${ }^{6} 3$ def. 11. is ${ }^{\text {b }}$ perpendicular to each of the straight lines LX, MX, NX. And because LX is equal to MX , and XR common, and at right angles to each of them, the base RL is equal to the base RM. For the same reason, RN is equal to each of the two RL,RM. Therefore the three straight lines RL, RM, RN, areall
 equal. And because the square of XR is equal to the excess of the square of AB above the square of $L X$; therefore the square of $A B$ is equal to the squares of
c47.1. LX, XR. But the square of $R L$ is equal ${ }^{\text {c }}$ to the same squares, because LXR is a right angle. Therefore the square of AB is equal to the square of $R L$, and the straight line $A B$ to $R L$. But each of the straight lines $\mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}, \mathrm{HK}$ is equal to $A B$, and each of the two RM, RN is equal to RL. Wherefore $\mathrm{AB}, \mathrm{BC}, \mathrm{DE}, \mathrm{EF}, \mathrm{GH}, \mathrm{HK}$, are each of them equal to each of the straight lines RL, RM, RN. And because RL, $R M$, are equal to $A B, B C$, and the base $L M$ to the base $A C$; - 8. 1. the angle LRM is equald to the angle ABC. For the same reason, the angle MRN is equal to the angle DEF, and NRL to GHK. Therefore there is made a solid angle at R, which is contained by three plane angles LRM, MRN, NRL, which are equal to the three given plane angles $\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHK}$, each to each. Which was to de done.

PROP. A. THEOR.

1F each of two solid angles be contained by three see a: plane anglés equal to one another, each to each; the planes in which the equal angles are to have the same inclination to one another.
Let there be two solid angles at the points A, B; and let the angle at A be contained by the three plane angles CAD, CAE, EAD; and the angle at B by the three plane angles FBG, FBH, HBG; of which the angle CAD is equal to the angle FBG, and CAE to FBH, and EAD to HBG: The planes in which the equal angles are, have the same inclination to one another.
In the straight line AC take any point K , and in the plane CAD from K draw the straight line $K D$ at right angles to $A C$, and in the plane CAE the straight line KL at right angles to the same AC: Therefore the angle DKL is the inclination ${ }^{2}$ of the plane CAD to the plane CAE: In BF take $B M$ equal to $A K$,

 and from the point M draw, in the planes FBG, FBH, the straight lines MG, MN at right angles to BF ; therefore the angle GMN is the inclination ${ }^{2}$ of the plane FBG to the plane FBH: Join LD, NG; and because in the triangles KAD, MBG, the angles KAD, MBG are equal, as also the right angles AKD, BMG, and that the sides AK, BM, adjacent to the equal angles, are equal to one another ; therefore KD is equal ${ }^{\circ}$ to $M G$, and $A D$ to ${ }^{\circ}$ 26. 1 . BG: For the same reason, in the triangles KAL, MBN, KL is equal to $M N$, and $A L$ to $B N$: And in the triangles LAD, NBG, LA, AD are equal to NB, BG, and they contain equal angles: therefore the base $L D$ is equalc to the ${ }^{\text {c }}$. 1 : base NG. Lastly, in the triangles KLD, MNG, the sides DK, KL, are equal to GM, MN, and the hase LD to the base NG; therefore the angle DKL is equal tod the angle 88.1 . GMN: But the angle DKL is the inclination of the plane CAD to the plane CAE, and the angle GMN is the inclina-

$$
\mathrm{P}_{3}
$$

THE ELEMENTS

Boox XI. tion of the plane FBG to the plane FBH, which planes have
37. def. 11 . therefore the same inclination ${ }^{2}$ to one another: And in the same manner it may be demonstrated, that the other planes in which the equal angles are, have the same inclination to one another. Therefore, if two solid angles, \&c. Q. E. D.

PROP. B. THEOR.

See N. IF two solid angles be contained, each by three plane angles which are equal to one another, each to cach, and alike situated; these solid angles are equal to one another.

Let there be two solid angles at A and B, of which the solid angle at A is contained by the three plane angles $\mathrm{CAD}, \mathrm{CAE}$, EAD : and that at B , by the three plane angles $\mathrm{FBG}, \mathrm{FBH}$, HBG ; of which CAD is equal to FBG ; CAE to FBH ; and EAD to HBG : The solid angle at ' A is equal to the solid angle at B.

Let the solid angle at A be applied to the solid angle at B; and, first, the plane angle CAD being applied to the plane angle FBG, so as the point A may coincide with the point B, and the straight line AC with BF ; then AD coincides with $B G$, because the angle CAD is equal to the angle FBG: And because the inclination of the plane CAE to the plane CAD is equal ${ }^{3}$ to the inclination of the plane FBH to the plane FBG, the plane CAE coincides with the plane FBH,
 because the planes CAD, FBG coincide with one another: And because the straight lines AC, BF coincide, and that the angle CAE is equal to the angle FBH ; therefore AE coincides with BH , and AD coincides with BG ; wherefore the plane EAD coincides with the plane HBG: Therefore the solid angle A coincides with the solid angle B, and conse-
-8. A.1. quently they are equal ${ }^{\text {b }}$ to one another. Q.E.D.

PROP. C. THEOR.

SOLID figures contained by the same number of $f_{\text {see }}$ ir. equal and similar planes alike situated, and having none of their solid angles contained by more than three plane angles; are equal and similar to one nothere.
Let $A G, K Q$ be two solid figures contained by the same number of similar and equal planes, alike situated, viz. let the plane AC be similar and equal to the plane KM , the plane AF to $\mathrm{KP} ; \mathrm{BG}$ to LQ ; GD to QN ; DE to NO ; and, lastly, FH similar and equal to PR : The solid figure AG is equal and similar to the solid figure KQ .

Because the solid angle at A is contained by the three plane angles BAD, BAE, EAD, which, by the hypothesis, are equal to the plane angles LKN, LKO, OKN, which contain the solid angle at K , each to each ; therefore the solid angle at \mathbf{A} is equal ${ }^{2}$ to the solid angle at K : In the same manner, the :. other solid angles of the figures are equal to one another. If, then, the solid figure AG be applied to the solid figure KQ, first the plane figure AC being applied to the plane figure KM ; the straight line AB coinciding with KL, the figure $A C$ must
 coincide with the figure KM, because they are equal and similar: Therefore the straight lines $\mathrm{AD}, \mathrm{DC}, \mathrm{CB}$ coincide with $\mathrm{KN}, \mathrm{NM}, \mathrm{ML}$, each with each; and the points A, D, C, B, with the points K, N, M, L: And the solid angle at A coincides with ${ }^{2}$ the solid angle at K ; wherefore the plane $A F$ coincides with the plane KP , and the figure AF with the figure KP , because they are equal and similar to one another: Therefore the straight lines $\mathrm{AE}, \mathrm{EF}, \mathrm{FB}$, coincide with $\mathrm{KO}, \mathrm{OP}, \mathrm{PL}$; and the points EF with the points O, P. In the same manner, the figure AH coincides with the figure KR , and the straight line DH with NR, and the point H with the point R: And because the solid angle at B is equal to the solid angle at L, it may be proved, in the same manner, that the figure BG coin-

Book XI. cides with the figure $L Q$, and the straight line $C G$ with $M Q$, and the point G with the point Q : Since, therefore, all the planes and sides of the solid figure AG coincide with the planes and sides of the solid figure KQ, AG is equal and similar to KQ: And, in the same manner, any other solid figures whatever contained by the same number of equal and similar planes, alike situated, and having none of their solid angles contained by more than three plane angles, may be proved to be equal and similar to one another. Q. E. D.

PROP. XXIV. THEOR.

Sce N. the other two; wherefore they contain equal angles ${ }^{\text {b }}$; the angle ABH is therefore equal to the angle DCF : And because AB, BH are equal to DC, CF, and the angle ABH equal to the angle DCF ; therefore the base
c4. 1. AH is equal ${ }^{c}$ to the base $D F$, and the triangle ABH to the
d34. 1. triangle DCF : And the parallelogram BG is doubled of the triangle ABH , and the parallelogram CE double of the triangle DCF; therefore the parallelogram BG is equal and si. ilar to the parallelogram CE . In the same manner it may be proved, that the parallelogram AC is equal and similar
to the parallelogram GF , and the parallelogram AE to BF . $\underbrace{\text { Boos XI. }}$ Therefore, if a solid, \&c. Q. E. D.

PROP. XXV. THEOR.

IF a solid parallelopiped be cut by a plane parallel to see N. two of its opposite planes; it divides the whole into two solids, the base of one of which shall be to the base of the other, as the one solid is to the other.

Let the solid parallelopiped ABCD be cut by the plane EV, which is parallel to the opposite planes AR, HD, and divides the whole into the two solids ABFV, EGCD; as the base AEFY of the first is to the base EHCF of the other, so is the solid ABFV to the solid EGCD.
Produce AH both ways, and take any number of straight lines HM, MN, each equal to EH , and any number AK, KL, each equal to EA, and complete the parallelograms LO, KY, HQ, MS, and the solids LY, KR, HU, MT: Then, because the straightlines $\mathrm{LK}, \mathrm{KA}, \mathrm{AE}$ are all equal, the parallelograms

LO, KY, AF are equal ${ }^{2}$: And likewise the parallelograms $\mathrm{KX},{ }^{2}{ }^{2} 36.1$. $\mathrm{KB}, \mathrm{AG}^{2}$; as also ${ }^{\text {b }}$ the parallelograms $\mathrm{L} \mathrm{Z}, \mathrm{KP}, \mathrm{AR}$, because ${ }^{\circ} 2 \ddagger .1 i$. they are opposite planes: For the same reason, the parallelograms $\mathrm{EC}, \mathrm{HQ}, \mathrm{MS}$, are equal ${ }^{2}$; and the parallelograms HG , HI, IN, as also ${ }^{\text {b }} \mathrm{HD}, \mathrm{MU}, \mathrm{NT}$: Therefore three planes of the solid LP are equal and similar to three planes of the solid KR , as also to three planes of the solid AV: But the three planes opposite to these three are equal and similar ${ }^{b}$ to them in the several solids, and none of their solid angles are contained by more than three plane angles: Therefore the three solids LP, $K R, A V$ are equalc to one another: For the same reason the $\cdot c .11$. three solids ED, HU, MT are equal to one another: Therefore

Boox XI. fore what multiple soever the base LF is of the base AF, the same multiple is the solid LV of the solid AV : For the same reason, whatever multiple the base NF is of the base HF, the same multiple is the solid NV of the solid ED : And if the base
'c. 11. LF be equal to the base NF, the solid LV is equale to the solid NV ; and if the base LF be greater than the base NF, the solid LV is greater than the solid NV ; and if less, less: Since then there are four magnitudes, viz. the two bases AF, FH,

and the two solids AV, ED, and of the base AF and solid AV, the base LF and solid LV are any equimultiples whatever ; and of the base FH and solid ED, the base FN and solid NV are any equimultiples whatever; and it has been proved, that if the base LF is greater than the base FN, the solid LV is greater than the solid NV; and if equal, equal; and if less, less̀.

- 5. def. 5. Therefore ${ }^{\text {d }}$ as the base AF is to the base FH, so is the solid AV to the solid ED. Wherefore, if a solid, \&ic. Q. E. D.

PROP. XXVI. THEOR.

See N. AT a given point in a given straight line, to make a solid angle equal to a given solid angle contained by three plane angles.

Let $A B$ be a given straight line, A a given point in it, and D a given solid angle contained by the three plane angles $\mathrm{EDC}, \mathrm{EDF}, \mathrm{FDC}$: It is required to make at the point Λ in the straight line AB a solid angle equal to the solid angle D .

In the straight line $D F$ take any point F, from which draw
:11. 11. ${ }^{2}$ FG perpendicular to the piane EDC, meeting that plane in G; join $D G$, and at the point A, in the straight line $A B$,
-2.1. make ${ }^{\text {b }}$ the angle BAL equal to the angle EDC, and in the plane BAL make the angle BAK equal to the angle EDG;
' 12. 11. then make $A K$ equal to $D G$, and from the point K erect ${ }^{\text {c }} \mathrm{KH}$
$2 t$ right angles to the plane BAL: and make KH equal to GF, Book XI. and join AH : Then the solid angle at A , which is contained by the three plane angles BAL, BAH, HAL, is equal to the solid angle at D contained by the three plane angles EDC, EDF, FDC.

Take the equal straight lines $A B, D E$, and join $H B, K B$, FE, GE : And because F is perpendicular to the plane EDC, it makes right angles ${ }^{d}$ with every straight line meeting it in 83 . def. 11 . that plane: Therefore each of the angles FGD, FGE is a right angle: For the same reason, $\mathrm{HKA}, \mathrm{HKB}$ are right angles: And because $K A, A B$ areequal to $G D, D E$, each to each, and contain equal angles, therefore the base $B K$ is equale to the base ${ }^{\text {ef }}$. 1 . EG : And KH is equal to GF , and $\mathrm{HKB}, \mathrm{FGE}$ are righ: angles, therefore HB is equalc to FE : Again, because $A K, \mathrm{~K}^{*} H$ are equal to DG, GF ; and contain right angles, the base AH is equal to the base $D F$: and $A B$ is equal to $D E$: therefore $H A, A B$, are equal to $F D, D E$, and the base $H B$ is equal to the base FE, therefore, the angle BAH is
equal ${ }^{\text {f }}$ to the angle EDF: For the same reason, the angle HAL is equal to the angle FDC. Because if $A L$ and DC be made equal, and KL, HL, GC, FC

's. 1. be joined, since the whole angle BAL is equal to the whole F.DC, and the parts of them BAK, EDG are, by the construction, equal : therefore the remaining angle KAL is equal to the remaining angle GDC : And because KA , AL are equal to GD, DC, and contain equal angles, the base KL is equaie to the base GC : And KH is equal to GF, so that LK, KH are equal to CG, GF, and they contain right angles; therefore the base HL is equal to the base $F \mathrm{C}: \mathrm{A}$ gain, because HA, AL are equal to $F D, D C$, and the base $H L$ to the base $F C$, the angle HAL is equal to the angle FDC: Therefore, because the three plane angles BAL, BAH, HAL, which contain the solid angle at A , are equal to the three plane angles EDC, $\mathrm{EDF}, \mathrm{FDC}$, which contain the solid angle at D , each to each, and are situated in the same order, the sulidangle at A is equaly $: B$. in to the solid angle at D. Therefore, at a given point, in a given straight line, a solid angle has been made equal to a given solid angle contained by three plane angles. Which was to be done.

THE ELEMENTS
Book XI.

-PROP. XXVII. PROB.

To describe from a given straight line a solid parallelopiped similar, and similarly situated to one given.

Let $A B$ be the given straight line, and $C D$ the given solid paarallelopiped. It is required from $A B$ to describe a solid parallelopiped similar, and similarly situated to CD.

At the point A of the given straight line $A B$, make ${ }^{2}$-a solid angle equal to the solid angle at C , and let $\mathrm{BAK}, \mathrm{KAH}, \mathrm{HAB}$ be the three plane angles which contain it, so that BAK be equal to the angle $E C G$, and $K A H$ to $G C F$, and $H A B$ to
-12. 6. FCE: And as EC to CG, so make ${ }^{\text {b }}$ BA to AK; and as GC to
c 22.5. CF, so make ${ }^{\text {b }} \mathrm{KA}$ to AH ; wherefore, ex æqualic, as EC to CF , so is BA to AH : Complete the parallelogram BH , and the solid AL: And because, as EC to CG; so BA to AK, the sides about the equal angles ECG, BAK are proportionals; therefore the parallelogram BK is similar to EG. For the same
 reason, the paral. lelogram KH is similar to GF, and HB to FE. Wherefore three parallelograms of the solid AL are similar to three of the solid CD; and the three opposite ones in each solid are equald and similar to these, each to each. Also, because the plane angles which contain the solid angles of the figures are equal, each to each, and situated in the same order, the solid angles
e B. $11 .-$
₹ 11. def. 11 are equale, each to each. Therefore the solid AL is similar ${ }^{\text {s }}$ to the solid CD. Wherefore from a given straight line AB a solid parallelopiped AL has been described similar, and similarly situated to the given one CD. Which was to be doace.

PROP. XXVIII. THEOR.

IF a solid parallelopiped be cut by a plane passing see N . through the diagonals of two of the opposite planes; it shall be cut in two equal parts.

Let AB be a solid parallelopiped, and DE, CF the diagonals of the opposite parallelograms AH, GB, viz. those which are drawn betwixt the equal angles in each: And because CD, FE are each of them pairallel to GA , and not in the same plane with it, CD, FE are parallele ${ }^{2}$; wherefore the diagonals $\mathrm{CF},{ }^{\text {a }} 9.11$. DE are in the plane in which the parallels are, and are themselves parallels ${ }^{5}$: And the plane CDEF shall cut the solid $A B$ into two equal parts.
Because the triangle CGF is equal ${ }^{\circ}$ to the triangle CBF, and the triangle DAE to DHE; and that the parallelogram CA is equald and similar to the opposite one BE ; and the parallelogram GE to CH; Thercfore the
 prism contained by the two triangles CGF, DAE, and the three parallelograms $\mathrm{CA}, \mathrm{GE}, \mathrm{EC}$, is equal ${ }^{\text {t }}$, the prism contained by the two triangles $\mathrm{CBF}, \mathrm{DHE},{ }^{\circ} \mathrm{C} .11$. and the three parallelograms $\mathrm{BE}, \mathrm{CH}, \mathrm{EC}$; because they are contained By the same number of equal and similar planes, alike situated, and none of their solid angles are contained by more than three plane angles. Therefore the solid $A B$ is cut into two equal parts by the plane CDEF. Q. E. D.
' N. B. The insisting straight lines of a parallelopiped, mens tioned in the next and some following propositions, are the ' sides of the paralielograms betwixt the base and the opposite 'plane parallel to it.'

PROP. XXIX. THEOR.

SOLID parallelopipeds upon the same base, and of See . the same altitude, the insisting. straight lines of which are terminated in the same straight lines in the plane opposite to the base, are equal to one another.

Book XI.

See the tigures be low.
325.11. grams, CB is equal ${ }^{b}$ to each of the opposite sides 1$) \mathrm{H}, \mathrm{EK}$; wherefore DH is equal to EK: Add, or take away the common part HE ; then DE is equal to HK : Wherefore also the tri-
c 38. 1.
-36. 1.
e 2t. 11.
Let the solid parallelopipeds AH, AK be upon the same base $A B$, and of the same altitude, and let their insisting straight lines $A F, A G, L M, L N$ be terminated in the same straight line FN , and $\mathrm{CD}, \mathrm{CE}, \mathrm{BH}, \mathrm{BK}$, be terminated in the same straight line $D K$; the solid $A . H$ is equal to the solid AK.

First, Let the parallelograms DG, HN, which are opposite to the base AB, have a common side HG : Then, because the solid AH is cut by the plane AGHC passing through the diagonals AG, CH of the opposite planes ALGF, CBHD, AH is cut into two equal parts ${ }^{2}$ by the plane AGHC: Therefore the solid AH is double of the prism which is contained betwixt the triangles ALG, CBH: For the same reason, because the solid AK . is cut by the plane L.GHB through the diagonals LG, BH of the opposite planes ALNG, CBKH, the solid AK
 is double of the same prism which is contained betwixt the triangles ALG, CBH. Therefore the solid AH is equal to the solid AK.

But, let the parallelograms D.M, EN, opposite to the base, have no common side: Then, because CH, CK are parallelo- angle CDE is equal' to the triangle BHK : And the parallelogram $D G$ is equal ${ }^{6}$ to the parallelogram HN : For the same reason, the triangle $A F G$ is equal to the triangle $L M N$, and the parallelogram CF is equale to the parallelogram BM , and

CG to BN: for they are opposite. Therefore the prism which is contained by the two triangles $\mathrm{AFG}, \mathrm{CDE}$, and the three

[^5] parallelograms $\mathrm{AD}, \mathrm{DG}, \mathrm{GC}$ is equalf to the prism, contained by the two triangles IMN, BHK, and the three parallelograms $B M, M K, K L$. If therefore the prism LMNBHK be
taken from the solid of which the base is the parallelogram Boos XI. AB , and in which FDKN is the one opposite to it ; and if from this same solid there be taken the prism AFGCDE, the remaining solid, viz. the parallelopiped AH , is equal to the remaining parallelopiped AK. Therefore solid parallelopipeds, \&c. Q. E. D.

PROP. XXX. THEOR.

SOLID parallelopipeds upon the same base, and see N. of the same altitude, the insisting straight lines of which are not terminated in the same straight lines in the plane opposite to the base, are equal to one another.

Let the parallelopipeds CM, CN, be upon the same base AB , and of the same altitude, but their insisting straight lines AF, $\mathrm{AG}, \mathrm{LM}, \mathrm{LN}, \mathrm{CD}, \mathrm{CE}, \mathrm{BH}, \mathrm{BK}$, not terminated in the same straight lines: The solids, CM, CN are equal to one another.

Produce FD, MH, and NG, KE, and let them meet one another in the points $\mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}$; and join $\mathrm{AO}, \mathrm{LP}, \mathrm{BQ}$, CR; And because the plane LBHM is parallel to the opposite

plane ACDF, and that the plane LBHM is that in which are the parallels LB, MHPQ, in which also is the figure BLPQ; and the plane $A C D F$ is that in which are the parallels $A C$, FDOR, in which also is the figure CAOR ; therefore the figures $B L P Q, C A O R$ are in parallel planes: In like manner, because the plane ALNG is parallel to theopposite plane CBKE, and that the plane ALNG is that in which are the parallels

Book XI. $A L, O^{P} G N$, in which also is the figure ALPO; and the plane CBKE is that in which are the parallels $C B, R Q E K$, in which also is the figure CBQR ; therefore the figures $A L P O, C B Q R$ are in parallel planes: And the planes ACBL, ORQP are parallel; therefore the solid CP is a parallelopiped: But the solid CM , of which the base is ACBL_{2} to which FDHM is the
29.11, opposite parallelogram, is equal ${ }^{2}$ to the solid CP , of which the

base is the parallelogram ACBL, to which ORQP is the one opposite; because they are upon the same base, and their insisting straight lines $\mathrm{AF}, \mathrm{AO}, \mathrm{CD}, \mathrm{CR}$; LM, LP, BH, BQ are in the same straight.lines FR, MQ: And the solid CP is equal ${ }^{2}$ to the solid CN: for they are upon the same base ACBL, and their insisting straight lines AO, AG, LP, LN ; CR, CE, BQ, BK are in the same straight lines ON, RK : Therefore the solid CM is equal to the solid CN. Wherefore solid parallelopipeds, \&c. Q. E. D.

PROP. XXXI. THEOR.

See Ṅ. SOLID parallelopipeds, which are upon equal bases, and of the same altitude, are equal to one another.

Let the solid parallelopipeds $A E, C F$, be upon equal bases $A B, C D$, and be of the same altitude ; the solid $A E$ is equal to the solid CF.

First, Let the insisting straight lines be at right angles to the bases $A B, C D$, and let the bases be placed in the same plane,
and so as that the sides CL, LB be in a straight line; there- Boox XI. fore the straight line LM, which is at right angles to the plane in which the bases are, in the point L , is common ${ }^{2}$ to the two 213.11 . solids AE, CF ; let the other insisting lines of the solids be . $\mathrm{AG}, \mathrm{HK}, \mathrm{BE} ; \mathrm{DF}, \mathrm{OP}, \mathrm{CN}$: And first, let the angle ALB be. equal to the angle CLD; then $A L, L D$ are in a straight line . 014.1. Produce OD, HB , and let them meet in Q , and complete the solid parallelopiped LR, the base of which is the parallelogram $\mathrm{L} Q$, and of which LM is one of its insisting straight lines: Therefore, because the parallelogram $A B$ is equal to $C D$, as the base $A B$ is to the base $L Q$, so is ${ }^{c}$ the base $C D$ to the same ${ }^{\circ} 7.5$. LQ: And because the solid parallelopiped AR is cut by the plane LMEB, which is parallel to the opposite planes AK, DR; as the base $A B$ is to the base $L Q$; so is the solid AE to the ${ }^{d} 25.11$. solid LR: For the same reason, because the solid parallopiped CR is cut by the plane LMFD, which is parallel to the opposite planes $C P, B R$; as the base CD to the base $L Q$, so is the solid CF to the solid LR: But as the base $A B$ to the base $L Q$, so the base $C D$ to the base LQ , as before was proved: Therefore as the solid AE to the solid
 LR, so is the solid CF to the solid LR; and therefore the solid AE is equal to the solid CF.

But let the solid parallelopipeds $S E, \mathrm{CF}$ be upon equal bases SB, CD, and be of the same altitude, and let their insisting straight lines be at right angles to the bases; and place the bases SB, CD in the same plane, so that CL, LB be in a straight line; and let the angles SLB, CLD be unequal ; the solid SE is also in this case equal to the solid CF : Produce DL, TS until they meet in A , and from B draw BH parallel to DA ; and let HB, OD produced meet in Q , and complete the solids AE , LR: Therefore the solid AE, of which the base is the parallelogram LE, and AK the one opposite to it, is equal ${ }^{\text {f }}$ to the solid 823.11. SE, of which the base is LE, and to which SX is opposite; for they are upon the same base LE, and of the same altitude, and their insisting straight lines, viz. LA, LS, BH, BT ; MG, MV, EK, EX are in the same straight lines AT, GX: And

THE ELEMENTS

Book XI. because the parallelogram AB is equalg to SB , for they are upon
6 35. 1. the same base LB, and between the same parallels LB, AT: and that the base SB is equal to the base CD ; therefore the base $A B$ is equal to the base CD, and the angle ALB is equal to the angle CLD: Therefore, by the first case, the solid AE is equal to the solid
 CF ; but the solid AE is equal to the solid SE , as was demonstrated ; therefore the solid SE is equal to the solid CF.

But, if the insisting straight lines AG, HK, BE, LM; CN, $R S, D F, O P$, be not at right angles to the bases $A B, C D$; in this case likewise the solid AE is equal to the solid CF: From the points $\mathrm{G}, \mathrm{K}, \mathrm{E}, \mathrm{M} ; \mathrm{N}, \mathrm{S}, \mathrm{F}, \mathrm{P}$, draw the straight lines
*11. 11. GQ, KT, EV, MX; NY, SZ, FI, PU, perpendicular ${ }^{\text {h }}$ to the plane in which are the bases $A B, C D$; and let them meet it in the points $\mathrm{Q}, \mathrm{T}, \mathrm{V} ; \mathrm{X} ; \mathrm{Y}, \mathrm{Z}, \mathrm{I}, \mathrm{U}$, and join $\mathrm{QT}, \mathrm{TV}, \mathrm{VX}$, XQ; YZ, ZI, IU, UY: Then, because GQKT are at right

i6. 11. angles to the same plane, they are parallel ${ }^{1}$ to one another: And MG, EK are parallels; therefore the plane MQ, ET, of which one passes through MG, GQ, and the other through EK, KT, which are parallel to MG, $\mathcal{G Q}$, and not in the same

[^6] plane with them, are parallel ${ }^{k}$ to one another: For the same reason, the planes MV, GT are parallel to one another : Therefore the solid QE is a parallelopiped: In like manner, it may be proved, that the solid YF is a parallelopiped: But, from what has been demonstrated, the solid EQ is equal to the solid FY, because they are upon equal bases MK, PS, and of the same altitude, and have their insisting straight lines at right angles

OF EUCLID.

to the bases: And the solid EQ is equal ${ }^{1}$ to the solid AE ; and Boox XI. the solid FY to the solid CF; because they are upon the same 1_{29}, or 30 . bases and of the same altitude: Therefore the solid AE is equal i1. to the solid CF : Wherefore solid parallelopipeds, \&̌c. Q. E. D.

PROP. XXXII. THEOR.

SOLID parallelopipeds which have the same alti- see N. tude, are to one another as their bases.

Let AB, CD be solid parallelopipeds of the same altitude : They are to one another as their bases; that is, as the base AE to the base CF, so is the solid $A B$ to the solid CD.

To the straight line FG apply the parallelogram FH equal ${ }^{2}$: Cor. 451 to AE , so that the angle FGH be equal to the angle LCG; and complete the solid parallelopiped GK upon the base FH , one of whose insisting lines is FD, whereby the solids CD, GK must be of the same altitude : Therefore the solid $A B$ is equal ${ }^{b}$:31. 11. to the solid GK, because they are upon equal bases AE, FH, and are of the same altitude: And because the solid parallelopi-
 ped CK is cut by the plane DG which is parallel to its opposite planes, the base HF is c to the base FC, as the solid HD to the solid DC : © 25.11 . But the base HF is equal to the base AE, and the solid GK to the solid AB : Therefore, as the base AE to the base CF, so is the solid AB to the solid CD. Wherefore solid parallelopipeds, \&c. Q. E. D.

Cor. From this it is manifest, that prisms upon triangular bases, of the same altitude, are to onc anuther as their bases.

Let the prisms, the bases of which are the triangles $A E M$, CFG, and NBO, PDQ the triangles opposite to them, have the same altitude; and complete the parallclograns, AE, CF, and the solid parallelopipeds $A B, C D$; in the first of which let MO , and in the other let GQ be one of the insisting lines. And because the solid parallelopipeds AB, CD have the same altitude, they are to one another as the base AE is to the base

$$
Q_{2}
$$

CF;

Book XI. CF; wherefore the prisms, which are their halvesd, are to one d 28, 11. another, as the base AE to the base CF ; that is, as the triangle AEM to the triangle CFG.

PROP. XXXIII. THEOR.

SIMILAR solid parallelopipeds are one to another in the triplicate ratio of their homologous sides.

Let $\triangle B, C D$ be similar solid parallelopipeds, and the side AE homologous to the side CF: The solid AB has to the solid CD , the triplicate ratio of that which AE has to CF .

Produce AE, GE, HE, and in these produced take EK equal to CF, EL equal to FN, and EM equal to FR ; and complete the parallelogram KL, and the solid KO: Because KE, EL, are equal to CF, FN, and the angle KEL equal to the angle CFN, because it is equal to the angle $A E G$, which is equal to CFN, by reason that the solids AB, CD are similar ; therefore the parallelogram KL is similar and equal to the parallelogram CN . For the same reason, the parallelogram MK is similar and equal to CR, and also OEtoFD. Therefore three paralle'lograms of the solid KO are equal andsimilar to three parallelograms of the solid CD: And the three opposite ones in each solid are equal a and similar to these: Therefore the so-

*C.11. Fid KO is equal ${ }^{\text {b }}$ and similar to the solid CD : Complete the parallelogram GK, and complete the solids EX, LP upon the bases GK, KL , so that EH be an insisting straight line in each of them; whereby they must be of the same altitude with the solid AB : And because the solids $A B, C D$ are similar, and, by permutation, as AE is to CF; so is EG to FN , and so is EH to FR ; and FC is equal to FK, and FN to EL, and FR to EM : Therefore, as AF to EK, so is EG to EL, and so is HE to
c1.6. EM : But, as AE to EK , so^{c} is the parallelogram AG to the parallelogram GK; and as GE to EL, so is ${ }^{〔}$ GK to $K L$,
and as HE to EM , so ${ }^{c}$ is PE to KM : therefore as the paral- Boor XI. lelogram AG to the parallelogram GK , so is GK to KL , and $\mathrm{c}_{1.6}$.
PE to KM: But as AG, to GK, so ${ }^{d}$ is the solid AB to the ${ }^{4} 25.11$. solid EX ; and as GK to KL, so ${ }^{d}$ is the solid EX to the solid PL ; and as PE to KM, sod is the solid PL to the solid KO: And therefore as the solid AB to the solid EX, so is EX to PL, and PL to KO : But if four magnitudes be continual proportionals, the first is said to have to the fourth the triplicate ratio of that which it has to the second: Therefore the solid AB has to the solid KO , the triplicate ratio of that which AB has to EX': But as AB is to EX, so is the parallelogram AG to the parallelogram GK, and the straight line AE to the straight line EK. Wherefore the solid AB has to the solid KO, the triplicate ratio of that which AE has to EK. And the solid KO is equal to the solid $C D$, and the straight line $E K$ is equal to the straight line CF. Therefore the solid $A B$ has to the solid CD, the triplicate ratio of that which the side AE has to the homologous side CF, \&rc. Q. E. D.

Cor. From this it is manifest, that, if four straight lines be continual proportionals, as the first is to the fourth, so is the solid parallelopiped described from the first to the similar solid similarly described from the second ; because the first straight line has to the fourth the triplicate ratio of that which it has to the second.

PROP. D. THEOR.

SOLID parallelopipeds contained by parallelo- see N. grams equiangular to one another, each to each, that is, of which the solid angles are equal, each to each, have to one another the ratio which is the same with the ratio compounded of the ratios of their sides.

Let $A B, C D$ be solid parallelopipeds, of which $A B$ is contained by the parallelograms $A E, A F, A G$ equiangular, each to each, to the parallelograms $\mathrm{CH}, \mathrm{CK}, \mathrm{CL}$, which contains the solid CD. The ratio which the solid AB has to the solid $C D$, is the same with that which is compounded of the ratios of the sides AM to DL, AN to DK, and $A O$ to $D H$.
 to DL, AQ to DK , and AR to DH ; and complete the solid parallelopiped AX contained by the parallelograms $A S, A T$, AV similar and equal to $\mathrm{CH}, \mathrm{CK}, \mathrm{CL}$, each to each. 'There-

- C. 11. . fore the solid AX is equal ${ }^{2}$ to the solid CD. Complete likewise the solid AY, the base of which is AS, and of which AO is one of its insisting straight lines. Take any straight line a, and as MA to AP , so make a to b; and as NA to $A Q$ so make b to c ; and as AO to AR, so c to d: Then, because the parallelogran3 AE is equiangular to AS, AE is to AS , as the straight line a to C , as is demonstrated in the 23 d Prop. Book 6 , and the solids $A B, \Lambda Y$, being betwixt the parallel planes BOY, EAS, are of the same altitude. Therefore the solid AB is to the solid AY, as ${ }^{\text {b }}$ the base AE to the base AS: that is, as the straight line a is to c. And the solid AY is to the solid

$A X$, as the base $O Q$ is to the base $Q R$; that is, as the straight
${ }^{\text {c 25. 11. }}$ line OA to AR; that is, as the straight line c to the straight line d. And because the solid AB is to the solid AY, as a is to c , and the solid AY to the solid AX , as c is to d ; ex xquali, the solid $A B$ is to the solid $A X$ or $C D$ which is equal to it, as the straight line a is to d. But the ratio of a to d is said to
d Def. A. 5. be compounded d of the ratios of a to b, b to c, and c to d, which are the same with the ratios of the sides MA to AP, NA to $A Q$, and OA to AR, each to each. And the sides AP, AQ, AR are equal to the sides $\mathrm{DL}, \mathrm{DK}, \mathrm{DH}$, each to each. Therefore the solid AB has to the şolid CD the ratio. which is the same with that which is compounded of the ratios of the sides AM to DL, AN to DK, and AO to DH. Q. E. D.

PROP. XXXIV. THEOR.

THE bases and altitudes of equal solid parallelo- $\sec \mathrm{N}$. piped, are reciprocally proportional; and if the bases and altitudes be reciprocally proportional, the solid parallelopipeds are equal.

Let $A B, C D$ be equal solid parallelopipeds; their bases are reciprocally proportional to their altitudes; that is, as the base EH is to the base NP, so is the altitude of the solid CD to the altitude of the solid AB.

First, Let the insisting straight lines AG, EF, LB, HK ; CM, NX, OD, PR be at right angles to the bases. As the base EH to the base NP, so is CM to AG. If the base EH be equal to the base NP, then because the solid $A B$ is likewise equal to the solid CD, CM shall be aqual to AG. Because if the bases EH, NP, be equal, but the altitudes
 AG, CM be not equal, neither shall the solid $A B$ be equal to the solid $C D$. But the solids are equal, by the hypothesis. Therefore the altitude CM is not unequal to the altitude $A G$; that is, they are equal. Wherefore, as the base EH to the base NP, so is CM to AG.

Next, let the bases EH, NP not be equal, but EH greater than the other: Since then the solid $A B$ is equal to the solid CD, CM is therefore greater than AG: For if it be not, neither also in this case would the solids $A B, C D$ be equal, which, by the hypothesis, are equal. Make then CT equal to AG, and complete the solid parallelopiped CV of which the base is NP, and altitude
 CT. Because the solid $A B$ is equal to the solid $C D$, therefore the solid $A B$ is to the Q4 solid

Boos XI. solid CV, as ${ }^{2}$ the solid CD to the solid CV . But as the solid
27.5 .

- 32. 11.

${ }^{\text {c }} 25.11$.
d 1.6. AB to the solid CV, so ${ }^{\text {b }}$ is the base EH to the base NP; for the solids $A B, C V$ are of the same altitude ; and as the solid CD to CV , so ${ }^{c}$ is the base MP to the base PT , and $s 0^{4}$ is the straight line $M C$ to $C T$; and $C T$ is equai to $A G$. Therefore, as the base EH to the base NP, so is $M C$ to AG. Wherefore the bases of the solid parallelopipeds $A B, C D$ are reciprocally proportional to their altitudes.

Let now the bases of the solid parallelopipeds $A B, C D$ be reciprocally proportional to their altitudes; viz. as the base EH to the base NP, so the altitude of the solid CD to the altitude of the solid $A B$; the solid $A B$ is equal tothe solid CD . Let the insisting lines be, as before ${ }_{3}$ at right angles to the bases. Then, if the base EH be equal to the
 base NP, since EH is to NP, as the altitude of the solid CD is to the altitude of the solid $A B$, therefore the altitude of $C D$ is equal ${ }^{c}$ to the altitude of $A B$. But solid parallelopipeds upen equal bases, and of the same altitude, are equal ${ }^{f}$ to one another; therefore the solid $A B$ is equal to the solid $C D$.

But let the bases EH, NP be unequal, and let EH be the greater of the two. Therefore, since as the base EH to the base NP, so is CM the altitude of the solid CD to $A G$ the altitude of $A B$, CM is greatere than AG. Again, take CT equal to $\Lambda \mathrm{G}$, and complete, as before, theso lid CV. And because the base EH is to the base NP, as CM to AG and that $A G$ is equal to CT, therefore the base
 EH is to the base NP, as MC to CT. But as the base EH is to NP, so ${ }^{\text {b }}$ is the solid AB to the solid CV; for the solids $A B, C V$ are of the same altitude; and as $M C$ to $C T$, so is
the base MP to the base PT, and the solid CD to the solid ${ }^{c}$ Book XI. CV : And therefore as the solid AB to the solid CV , so is the 625.11 . solid $C D$ to the solid $C V$; that is, each of the solids $A B, C D$ has the same ratio to the solid $C V$: and therefore the solid $A B$ is equal to the solid CD.

Second general case. Let the insisting straight lines FE , $\mathrm{BL}, \mathrm{GA}, \mathrm{KH}$; $\mathrm{XN}, \mathrm{DO}, \mathrm{MC}, \mathrm{RP}$ not be at right angles to the bases of the solids; and from the points $F, B, K, G ; X$, $\mathrm{D}, \mathrm{R}, \mathrm{M}$ draw perpendiculars to the planes in which are the bases EH, NP meeting those planes in the points $\mathrm{S}, \mathrm{Y}, \mathrm{V}, \mathrm{T}$; $\mathrm{Q}, \mathrm{I}, \mathrm{U}, \mathrm{Z}$; and complete the solids FV, XU, which are parallelnpipeds, as was proved in the last part of Prop. 31 of this Book. In this case, likewise, if the solids $A B, C D$ be equal, their bases are reciprocally proportional to their altitudes, viz. the base EH to the base NP, as the altitude of the solid CD to the altitude of the solid AB . Because the solid AB is equal to the solid CD , and that the solid BT is equals to the 89 or 30 . solid BA, for they are upon the same base FK, and of the "11.

same altitude; and that the solid DC is equals to the solid DZ, being upon the same base XR, and of the samealtitude; therefore the solid BT is equal to the solid DZ: But the bases are reciprocally proportional to the altitudes of equal solid, parallelopipeds of which the insisting straight lines are at right angles to their bases, as before was proved:- Therefore as the base FK to the base XR, so is the altitude of the solid D'Z to the altitude of the solid BT: And the base FK is equal to the base EH, and the base XR to the base NP: Wherefore, as the base EH to the base NP, so is the altitude of the solid DZ to the altitude of the solid BT: But the altitudes of the solids $D Z, D C$, as also of the solids BT, BA are the same. Therefore as the base EH to the bise NP, so is the altitude of the solid

Book XI. solid $C D$ to the altitude of the solid $A B$; that is, the bases of the solid parallelopipeds AB, CD are reciprocally proportional to their altitudes.
Next, Let the bases of the solids AB, CD be reciprocally proportional to their altitudes, viz. the base EH to the base NP , as the altitude of the solid CD to the altitude of the solid $A B$; the solid $A B$ is equal to the solid $C D$: The same construction being made; because, as the base EH to the base NP , so is the altitude of the solid CD to the altitude of the solid AB ; and that the base EH is equal to the base FK ; and NP to XR; therefore the base FK is to the base XR, as the altitude of the solid CD to the altitude of AB : But the alti-

tudes of the solids $A B ; B T$ are the same, as also of $C D$ and DZ ; therefore as the base FK to the base XR, so is the altitude of the solid DZ to the altitude of the solid BT: Wherefore the bases of the solids BT, DZ are reciprocally proportional to their altitudes: and their insisting straight lines are at right angles to the bases; wherefore, as was before proved,
289 or 30 . the solid BT is equal to the solid DZ : But BT is equals to the solid BA, and DZ to the solid DC, because they are upon the same bases, and of the same altitude. Therefore the solid $A B$ is equal to the solid CD. Q.E.D.

PROP. XXXV. THEOR.

IF, from the vertices of two equal plane angles, there see x . be drawn two straight lines elevated above the planes in which the angles are, and containing equal angles with the sides of those angles, each to each; and if in the lines above the planes there be taken any points, and from them perpendiculars be drawn to the planes in which the first named angles are: And from the points in which théy meet the planes, straight lines be drawn to the vertices of the angles first named; these straight lines shall contain equal angles with the straight lines which are above the planes of the angles.

Let $\mathrm{BAC}, \mathrm{EDF}$ be two equal plane angles; and from the points A, D let the straight lines $A G, D M$ be elevated above the planes of the angles making equal angles with their sides, each to each, viz. the angle GAB equal to the angle MDE, and GAC to MDF ; and in. AG, DM let any' points G, M be taken, and from them let perpendiculars GL, MN be drawn to the planes $B A C, E D F$, meeting these planes in the points L, N;

and join LA, ND: The angle GAL is equal to the angle MDN.

Make AH equal to DM, and through H draw $H K$ parallel to GL: But GL is perpendicular to the plane BAC; wherefore HK is perpendicular ${ }^{2}$ to the same plane: From the points $=8.11$, K, N, to the straight lines $\mathrm{AB}, \mathrm{AC}, \mathrm{DE}, \mathrm{DF}$, draw perpendiculars $\mathrm{KB}, \mathrm{KC}, \mathrm{NE}, \mathrm{NF}$; and join $\mathrm{HB},-\mathrm{BC}, \mathrm{ME}, \mathrm{EF}$:
 HBK which passes through HK is at rightangles ${ }^{\text {b }}$ to the plane $B A C$; and $A B$ is drawn in the plane $B A C$ at right angles to the common section $B K$ of the two planes; therefore $A B$ is
eff. def. 11. perpendicular ${ }^{c}$ to the plane HBK , and makes right angles ${ }^{\text {d }}$
3. def. 11. with every straight line meetingitin that plane: But BH meets it in that plane; therefore ABH is a right angle: For the same reason, DEM is a right angle, and is therefore equal to the angle ABH : And the angle HAB is equal to the angle MDE . Therefore in the two triangles $\mathrm{HAB}, \mathrm{MDE}$ there are two angles in one equal to two angles in the other, each to each, and one side equal to one side, opposite to one of the equal angles in each, viz. HA equal to DM ; therefore the remaining sides are equate, each to each: Wherefore $A B$ is equal to $D E$. In the same manner, if HC and MF be joined, it may be demonstrated that $A C$ is equal to $D F$: Therefore, since $A B$ is equal to DE, BA and AC are equal to ED and DF ; and the angle

BAC is equal to the ante EDF ; wherefore the base BC is equal f to the base EF, and the remaining angles to the remaining angles: The angle $A B C$ is therefore equal to the angle DEF : And the right angle $A B K$ is equal to the right angle DEN, whence the remaining angle CBK is equal to the remaining angle FEN: For the same reason, the angle BCK is equal to the angle EFN: Therefore in the two triangles BCK_{2} EFN, there are two angles in one equal to two angles in the other, each to each, and one side equal to one side adjacent to the equal angles in each, viz. BC equal to EF ; the other sides, therefore, are equal to the other sides $; \mathrm{BK}$ then is equal to EN : and AB is equal to DE ; wherefore AB, BK are equal to DE, EN ; and they contain right angles; wherefore the base AK is equal to the base DN : And since AH is equal to

DM, the square of AH is equal to the square of DM: But the Boor XI. squares of AK, KH are equal to the squareg of AH , because 547.1 . AKH is a right angle : And the squares of DN, NM are equal to the square of DM, for DNM is a right angle: Wherefore the quares of $\mathrm{AK} ; \mathrm{KH}$ are equal to the squares of DN, NM; and of those the square of AK is equal to the square of DN : Therefore the remaining square of $\mathbb{K} H$ is equal to the remaining square of NM; and the straight line KH to the straight line NM : and because HA, AK are equal to MD, DN, each to each, and the base HK to the base MN , as has been proved; therefore the angle HAK is equal ${ }^{\text {b }}$ to the angle MDN. ${ }^{\text {a }}$ 8.1, Q. E. D.

Cor. From this it is manifest, that if, from the vertices of two equal plane angles, there be elevated two equal straight lines containing equal angles with the sides of the angles, each to each; the perpendiculars drawn from the extremities of the equal straight lines to the planes of the first angles are equal to one another.

Another Demonstration of the Corollaiy.

Let the plane angles BAC, EDF be equal to one another, and let AH, DM, be two equal straight lines above the planes of the angles, containing equal angles with $\mathrm{BA}, \mathrm{AC} ; \mathrm{ED}$ DF, each to each, viz: the angle $H A B$, equal to MDE, and HAC equal to the angle $M D F$; and from H, M let $H K, M N$ be perpendiculars to the planes $\mathrm{BAC}, \mathrm{EDF}: \mathrm{HK}$ is equal to MN.

Because the solid angle at \mathbf{A} is contained by the three plane angles $\mathrm{BAC}, \mathrm{BAH}, \mathrm{HAC}$, which are, each to each, equal to the three plane angles EDF, EDM, MDF containing the solid angle at D ; the solid angles at A and D are equal, and therefore coincide withone another ; to wit, if the plane angle BAC be applied to the plane angle EDF, the straight line AH coincides with DM, as was shewn in Prob. B. of this Book: And because AH is equal to DM , the point H coincides with the point M : Wherefore HK , which is perpendicular to the plane BAC , coincides with MN^{i} which is perpendicular to the plane ${ }^{i} 13.11$. EDF, because these planes coincides with one another: Therefore HK is equal to MN. Q. E. D.

PROP. XXXVI. THEOR.

See N . IF three straight lines be proportionals, the solid parallelopiped described froms all three as its sides, is equal to the equilateral parallelopiped described from the mean proportional, one of the solid angles of which is contained by three plane angles equal, each to each, to the three plane angles containing one of the solid angles of the other figure.

Let A, B, C be three proportionals, viz. A to B, as B to C : The solid described from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is equal to the equilateral solid described from B, equiangular to the other.

Take a solid angle D contained by three plane angles EDF, FDG, GDE ; and make each of the straight lines ED, DF, DG equal to B , and complete the solid parallelopiped DH : Make LK equal to A, and at the point K in the straight line LK, make a a solid angle contained by the three plane angles LKM, MKN, NKL equal to the angles EDF, FDG, GDE,

each to each; and make KN equal to B , and KM equal to C ; and complete the solid parallelopiped KO : And because, as A is to B, so is B to C, and that A is equal to $L K$, and B to each of the straight lines DE, DF, and C to KM ; therefore LK is to ED, as DF to KM ; that is, the sides about the equal angles are reciprocally proportional; therefore the parallelogram LM is equal ${ }^{\text {b }}$ to EF ; and because EDF, LKM are two equal plane angles, and the two equal straight lines DG, KN are drawn from their vertices above their planes, and contain equal angles with their sides; therefore the perpendiculars from the points G, N, to the planes EDF, LKM are
equale to one another: Therefore the solids KO, DH are of Eook XI. the same altitude; and they are upon equal bases $\mathrm{LM}, \mathrm{EF},{ }^{\circ}{ }_{\mathrm{Cos}}^{3} \mathbf{3 5}$. and therefore they are equald to one another: But the solid 11. KO is described from the three straight lines $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and ${ }^{\text {© }} 31.11$. the solid DH from the straight line B. If therefore three straight lines, \&ic. Q. E. D.

PROP. XXXVII. THEOR.

I
F four straight lines be proportionals, the similar see X : solid parallelopipeds similarly described from them shallalso be proportionals. And if the similar parallelopipeds similarly described from four straight lines be proportionals the straight lines shall be proportionals.

Let the four straight lines $\mathrm{AB}, \mathrm{CD}_{2} \mathrm{EF}, \mathrm{GH}$ be proportionals, viz. as AB to CD , so EF to GH ; and let the similar parallelopipeds AK, CL, EM, GN be similarly described from them. AK is to CL, as EM to GN.

Make ${ }^{2} \mathrm{AB}, \mathrm{CD}, \mathrm{O}, \mathrm{P}$ continual proportionals, as also EF, ${ }^{\text {: }} 11.6$. $\mathrm{GH}, \mathrm{Q}, \mathrm{R}$: And because as AB is to CD , so EF to GH : and

that $C D$ is ${ }^{b}$ to O, as $G H$ to Q, and O to P, as Q; to R; there- ${ }^{111.5}$. fore, ex æqualie, $A B$ is to P, as $E F$ to R : But as $A B$ to P, c 20.5 . sod is the solid AK, to the solid CL; and as EF to R, sod is ${ }^{d}$. Cor. 31 . 33. the solid EM to the solid GN : Therefore ${ }^{b}$ as the solid AK to the solid CL, so is the solid EM to the solid GN.

THE FLEMENTS

Book X1. But let the solid AK be to the solid CL, as the solid EM to 27. 11 . the solid. GN : The straight line $A B$ is to CD, as EF to GH.

Take AB to CD, as. EF to ST, and from ST describe ${ }^{\text {e }}$ a solid parallelopiped SV similar and similarly situated to either of the solids EM, GN : And because AB is to CD, as EF to ST, and that from AB, CD the solid parallelopipeds AK, CL are similarly described; and in like manner the solids EM, SV from the straight lines EF, ST; therefore AK is to CL , as

EM to SV : But, by the hypothesis, AK is to CL , as EM to
9.5. GN: Therefore GN is equalf to SV : But it is like'wise similar and similarly situated to $S V$; therefore the planes which contain the solids GN, SV are similar and equal, and their homologous sides GH, ST equal to one another : And because as AB to CD , so EF to ST, and that ST is equal to GH: AB is to CD , as EF to GH. Therefore, if four straight lines, \&cc. Q. E. D.

PROP. XXXVIII. THEOR.

See N. "IF a plane be perpendicular to another plane, and " a straight line be drawn from a point in one of "t the planes perpendicular to the other plane, this "straight line shall fall on the common section of "the planes.".
" Let the plane CD be perpendicular to the plane AB , and " let AD be the common section; if any point E be taken in " the plane $C D$, the perpendicular drawn from E to the plane " AB shall fall on AD .
" For, if it does not, let it, if possible, fall elsewhere, as EF; Boox XI. " and let it meet the plane AB in the point F; and from F
"draw, in the plane AB a perpendicular FG to DA, which : 12. 1. " is also perpendicular to the plane CD; and join EG: Then *4.def.11. " because FG is perpendicular " to the plane $C D$, and the "straight line EG, which is in "s that plane, meets it ; there" fore FGE is a right angle": "But EF is also at right angles " to the plane $A B$; and there" fore EFG is a right angle : "Wherefore two of the angles
 " of the triangle EFG are equal together to two right angles; " which is absurd: Therefore the perpendicular from the " point E to the plane $A B$, does not fall elsewhere than upon " the straight line AD ; it therefore falls upon it. If there"fore a plane," \&ic. Q. E. D.

PROP. XXXIX. THEOR.

IN a solid parallelopiped, if the sides of two of the See N. opposite planes be divided, each into two equal parts, the common section of the planes passing through the points of division, and the diameter of the solid parallelopiped cut each other into two equal parts.

Let the sides of the opposite planes CF, AH of the solid parallelopiped AF, be divided each into two equal parts in the points $\mathrm{K}, \mathrm{L}, \mathrm{M}$, $\mathrm{N} ; \mathrm{X}, \mathrm{O}, \mathrm{P}, \mathrm{R}$; and join $\mathrm{KL}, \mathrm{M} \mathrm{N}$, XO, PR: And because DK, CL are equal and parallel, KL is parallel ${ }^{2}$ to DC: For the same reason, MN is parallel to BA : And

R

Boos XI. BA is parallel to DC ; therefore, because KL, BA are each of them parallel to $D C$, and not in the same plane with it, $K L$ is

- 9. 11. parallel ${ }^{b}$ to $B A$: And because KL, MN are each of them parallel to $B A$, and not in the same plane with it, KL is parallel to MN ; wherefore KL, MN are in one plane. In like manner it may be proved, that XO, PR are in one plane. Leet YS be the common section of the planes KN, XR ; and DG the diameter of the solid parallelopiped AF: YS and DG dd meet, and cut one another into two equal parts.

Join DY, YE, BS, SG. Because DX is parallel to OE, the alternate angles DXY, YOE are equal ${ }^{c}$ to one another: And because $D X$ is equal to $O E$, and $X Y$ to $Y O$, and contain equal angles, the base DY is equal d to the base YE, and the other angles are equal ; therefore the angle XYD is equal to the angle OYE, and DYE is a straight ${ }^{6}$ line: For the same reason BSG is a straight line,
 and $B S$ equal to SG: And because CA is equal and parallel to DB , and alsa equal and parallel to $E G$; therefore $D B$ is equal and parallel ${ }^{\text {b }}$ to EG : And DE, BG join their extremities; therefore DE is equal and parallel ${ }^{\text {a }}$ to BG : And DG, YS are drawn from points in the one, to points in the other; and are therefore in one plane: Whence it is manifest, that DG, YS must meet one another; let them meet in T: And because DE is parallel to BG , the alternate angles $\mathrm{EDT}, \mathrm{BGT}$ are equale: and the angle DTY is cqualf to the angle GTS: Therefore in the triangles DTY, GTS there are two angles in the one equal to two angles in the other, and one side equal to one side, opposite to two of the equal angles, viz. DY to GS; for they are the halves of DE, BG : 'Therefore the remaining sides are equais, each to each. Wherefore DT is equal to TG, and YT equal to TS. Wherefore, if in a solid, \&\%c. Q.E.D.

PROP. XL. THEOR.

IfF there be two triangular prisms of the same altitude, the base of one of which is a parallelogram, and the base of the other a triangle; if the parallelogram be double of the triangle, the prisms shall be equal to one another.
Let the prisms ABCDEF, GHKLMN be of the same altitude, the first whereof is contained by the two triangles ABE, CDF , and the three parallelograms $\mathrm{AD}, \mathrm{DE}, \mathrm{EC}$; and the other by the two triangles GHK, LMN, and the three parallelograms LH, HN, NG; and let one of them have a parallelogram AF , and the other a triangle GHK for its base; if the parallelogram AF be double of the triangle GHK, the prism ABCDEF is equal to the prism GHKLMN.
Complete the solids AX, GO; and because the parallelogram AF is double of the triangle GHK ; and the parallelo-

gram HK double ${ }^{2}$ of the same triangle; therefore the paral- 3 3. 1. lelogram AF is equal to HK. But solid parallelopipeds upon equal bases, and of the same altitude, are equal ${ }^{\text {b }}$ to one another. © 31. 11. Therefore the solid AX is equal to the solid GO; and the prism ABCDEF is halfe of the solid AX; and the prism c 23.1 k GHKLMN half ${ }^{c}$ of the solid GO. Therefore the prism ABCDEF is equal to the prism GHKLMN. Wherefore, if there is two, \&ic. Q.E. D.

THE

ELEMENTS

or
E U CLID.

$\underbrace{\text { Book XII. }}$
BOOK XII.

LEMMA 1 .

Which is the first proposition of the tenth book, and is necessary to some of the propositions of this book.
See N . IF from the greater of two unequal magnitudes, there be taken more than its half, and from the remainder more than its half; and so on : There shall at length remain a magnitude less than the least of the proposed magnitudes.

Let $A B$ and C be two unequal magnitudes, of which $A B$ is the greater. If from $A B$ there be taken more that its half, and from the remainder more than its half, and so on; there shall at length remain a magnitude less than C .

For \mathbf{C} may be multiplied so as at length to become greater than AB. Let it be so multiplied, and let DE its multiple be greater than AB , and let DE be divided into $\mathrm{DF}, \mathrm{FG}, \mathrm{GE}$, each equal to C . From AB take BH greater than its half, and from the remainder AH take HK greater than its half, and so on, until there be as many divisions in $A B$ as there are in DE : And let the divisions in AB be AK , KH, HB; and the divisions in ED be DF, FG ,
 GE. And because $D E$ is greater than $A B_{\text {, and }}$

THE ELEMENTS OF EUCLID.

that EG taken from DE is not greater than its half, but BH Book XII, taken from $A B$ is greater than its half; therefore the remainder GD is greater than the remainder HA. Again, because GD is greater than HA, and that GF is not greater than the half of GD, but HK is greater than the half of HA ; therefore the remainder FD is greater than the remainder AK . And FD is equal to C, therefore C is greater than $A K$; that is, $A K$ is less than C. Q.E.D.

And if only the halves be taken away, the same thing may in the same way be demonstrated.

PROP. I. THEOR.

Sinitlar polygons inscribed in circles, are to one another as the squares of their diameters.

Let ABCDE, FGHKL be two circles, and in them the. similar polygons ABCDE, FGHKL; and let BM, GN be the diameters of the circles: As the square of $\mathrm{B} M$ is to the square of GN, so is the polygon ABCDE to the polygon FGHKL.

Join BE, AM, GL, FN : And because the polygon ABCDE is similar to the polygon FGHKL, and similar polygons are divided into similar triangles; the triangles $\mathrm{ABE}, \mathrm{FGL}$, are similar

and equiangular ${ }^{\text {b }}$; and therefore the angle $A E B$ is equal to the $\mathbf{~} 6.6$. angle $F L G$: But $A E B$ is equal ${ }^{\text {l }}$ to $A M B$, because they stand $\cdot 21.3$. upon the same circumference ; and the angle FLG is, for the same reason, equal to the angle FNG : Therefore also the angle AMB is equal to FNG: And the right angle BAM is equal to the right ${ }^{\text {d }}$ angle GFN; wherefore the remaining an- 831.3. gles in the triangles $A B M, F G N$ are equal, and they are equi-

Book XII
e 4.6.
10 def 5. 10 def. 5. the same with the duplicate ratio of BA, to GF: But the ratio 222.5 . F 20.6 . of the square of $B M$ to the square of $G N$, is the duplicates ratio of that which BM has to GN ; and the ratio of the po-

lygon ABCDE to the polygon FGHKL is the duplicater of that which BA has to GF : Therefore as the square of BM to the square of GN , so is the polvgon ABCDE to the polygon FGHKL. Wherefore similar polygons, \&c. Q. E. D.
'PROP. II. THEOR.
see N. CIRCLES are to one another as the squares of their diameters.

Let $\mathrm{ABCD}, \mathrm{EFGH}$ be two circles, and BD, FH their diameters: As the square of BD to the square of FH , so is the circle $\triangle B C D$, to the circle EFGH.

For, if it be not so, the square of BD shall be to the square of FH , as the circle ABCD is to some space either less than the circle EFGH, or greater than it*. First let it be to a space S less than the circle EFGH; and in the circle EFGH describe the square EFGH. This square is greater than half of the circle EFGH; because if, through the points $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, there be drawn tangents to the circle, the square

[^7]
OF EUCLID.

square EFGH is halfz of the square described about the circle; Book XII, and the circle is less than the square described about it; there- a 41.1 . fore the square EFGH is greater than half of the circle. Divide the circumferences $\mathrm{EF}, \mathrm{FG}, \mathrm{GH}, \mathrm{HE}$, each into two equal parts in the points, K, L, M, N, and join EK, KF, FL, LG, GM, MH, HN, NE: Therefore each of the triangles EKF, FLG, GMH, HNE is greater than half of the segment of the circle it stands in; because, if straight lines touching the circle be. drawn through the points K, L, M, N, and the parallelograms upon the straight lines EF, FG, GH, HE, b completed; each of the triangles EKF, FLG, GMH, HNE shall be the half of the parallelogram in which it is: But every segment is less than the parallelogram in which it is: Wherefore each of the triangles EKF, FLG, GMH, HNE is greater than half the segment of the circle which contains it: And if these circumferences before named be divided each into two equal parts, and their extremities be joined by straight lines, by continuing

to do this, there will at length remain segments of the circle, which, together, shall beless than the excessof the circle EFGH, above the space S : Because, by the preceding Lemma, if from the greater of two unequal magnitudes there be taken more than its half, and from the remainder more than its half, and so on, there shall at length remain a magnitude less than the least of the proposed magnitudes. Let then the segments EK, KF, FL, LG, GM, MH, HN, NE be those that remain, and are together less than the excess of the circle EFGH above S: Therefore, the rest of the circle, viz. the polygon EKFLG.MHN, is greater than the space S. Describe likewise in the circle $A B C D$ the polygon $A X B O C P D R$ similar to the polygon EKFLGMHN: As therefore, the square of BD is to the square of FH^{b}, so is the polygon AXBOCPDR to the 11. 2. polygon EKFLGMHN : But the square of $B D$ is also to the

THE ELEMENTS

Boox XII. square of FH, as the circle ABCD is to the space S. There:11.5. fore as the circle $A B C D$ is to the space S, so is the polygon AXBOCPDR to the polygon EKFLGMHN : But the circle $A B C D$ is greater than the polygon contained in it; wherefore
-14.5. the space S is greater ${ }^{d}$ than the polygon EKFLGMHN : But it is likewise less, as has been demonstrated; which is impossible. Therefore the square of BD is not to the square of FH , as the circle ABCD is to any space less than the circle EFGH: In the same manner, it may be demonstrated, that neither is the square of FH to the square of BD , as the circle EFGH is to any space less than the circle $A B C D$. Nor is the square of $B D$ to the square of $F H$, as the circle $A B C D$ is to any space greater than the circle EFGH: For, if possible, let it be so to T, a spacegreater than the circle EFGH: Therefore, inversely, as the square of FH to the square of $B D$, so is the space T to

the circle $A B C D$. But as the space $+T$ is to the circle $A B C D$, so is the circle EFGH to some space, which must be less ${ }^{d}$ than the circle ABCD, because the space T is greater, by hypothesis, than the circle EFGH. Therefore as the square of FH is to the

[^8]
OF EUCLID.

the square of $B D$, so is the circle EFGH to a space less than Book XII. the circle ABCD, which has been demonstrated to be impossible: Therefore the square of $B D$ is not to the square of FH as the circle ABCD is to any space greater than the circle EFGH: And it has been demonstrated, that neither is the square of BD to the square of FH , as the circle ABCD to any space less than the circle EFGH : Wherefore, as the square of BD to the square of FH , so is the circle ABCD to the circle EFGH \dagger. Circles therefore are, \&c. Q. E. D.

PROP. III. THEOR.

HVERY pyramid having a triangular base, may be see N . divided into two equal and similar pyramids having triangular bases, and which are similar to the whole pyramid; and into two equal prisms which together are greater than half of the whole pyramid.

Let there be a pyramid of which the base is the triangle $A B C$. and its vertex the point D : The pyramid $A B C D$ may be divided into two equal and similar peramid having triangular bases, and similar to the whole; and into two equal prisms which together are greater than half of the whole pyramid.

Divide $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}, \mathrm{AD}, \mathrm{DB}, \mathrm{DC}$, each into two equal parts in the points E, F, G, H, K, L, and join EH, EG, LH, WK, KL, LH, EX, MF, JG. Because AE is equal to EB , and AH to HD, HE is parallel ${ }^{1}$ to DB : For the same reason, HK is parallel to AB : Therefore HEBK is a parallelogram, and HK equal ${ }^{\mathrm{b}}$ to EB : but EB is equal to AE ; therefore also AE is equal to HK : And AH is equal to HD; where-
 fore EA, AH are equal to KH, HD, each to each; and the angle EAH is equals to the angle KHD ; c 29. . therefore the base EH is equal to the bascKD, and the triangle

AEH

[^9]Book XII. AEH equald and similar to the triangle HKD: For the same
4. 4.
e 10. 11. equale angles; therefore the angle EHG is equal to the angle KDL. Again, because EH, HG are equal to KD, DL, each to each, and the angle EHG equal to the angle KDL; therefore the base EG is equal to the base KL : And the triangle EHG equald and similar to the triangle KDL: For the same reason, the triangle AEG is also equal and similar to the triangle HKL. Therefore the pyramid, of which the base is the triangle AEG, and of which the vertex is the point H, is
© C. 11. equal ${ }^{f}$ and similar to the pyramid the base of which is the triangle KHL, and vertex the point D : And because HK is parallel to $A B$, a side of the triangle $A D B$, the triangle $A D B$ is equiangular to the triangle HDK, and their

[^10]h 21. 6. sides are proportionals8: Therefore the triangle ADB is similar to the triangle HDK: And for the same reason, the triangle DBC is similar to the triangle DKL; and the triangle ADC to the triangle HDL; and also the triangle ABC to the triangle AEG: But the triangle AEG is similar to the triangle HKL, as before was proved; therefore the triangle ABC is similar h to the
 triangle HKL. And the pyramid of
${ }^{1}$ B. 11. \&
11. def. 11. which the base is the triangle $A B C$, and vertex the point D is therefore similar ${ }^{i}$ to the pyramid of which the base is the tri-angle HKL, and vertex the same point D : But the pyramid of which the base is the triangle HKL, and vertex the point D , is similar, as has be: n proved, to the pyramid the base of which is the triangle AEG , and vertex the point H : Wherefore the pyramid, the base of which is the triangle $A B C$, and vertex the point D, is similar to the pyramid of which the base is the triangle AEG and vertex H : Therefore each of the pyrainids AEGH, HKLD is similar to the whole pyramid ABCD: And
441. 1. because BF is equal to $\cdot \mathrm{FC}$, the parallelogram EBFG is double ${ }^{k}$ of the triangle GFC: But when there are two prisins of the
same altitude, of which one has a parallelogram for its base, Boox XII. and the other a triangle that is half of the parallelogram, these prisms are equal ${ }^{3}$ to one another; therefore the prism having ${ }^{2} 40.1 \mathrm{ir}^{\mathrm{r}}$ the parallelogram EBFG for its base, and the straight line KH opposite to it , is equal to the prism having the triangle GFC for its base, and the triangle HKL opposite to it; for they are of the same altitude, because they are between the parallel ${ }^{\text {b }}$ planes $\mathrm{ABC}, \mathrm{HKL}$: And it is manifest that each of ${ }^{\circ} 15.11$. these prisms is greater than either of the pyramids of which the triangles AEG, HKL are the bases, and the vertices the points H, D; because, if EF be joined, the prism having the parellelogram EBFG for its base, and KH the straight line opposite to it, is greater than the pyramid of which the base is the triangle EBF, and vertex the point K ; but this pyramid is equalc to the pyramid the base of which is the triangle ${ }^{\circ} \mathrm{C} .11$. AEG, and vertex the point H ; because they are contained by equal and similar planes: Wherefore the prism having the parallelogram EBFG for its base, and opposite side KH, is greater than the pyramid of which the base is the triangle $A E G$, and vertex the point F : And the prism of which the base is the parallelogram EBFG, and opposite side KH is equal to the prism having the triangle GFC for its base, and HKL the triangle opposite to it; and the pyramid of which the base is the triangle AEG, and vertex H , is equal to the pyramid of which the base is the triangle HKL, and vertex D: Therefore the two prisms before-mentioned are greater than the two pyramids of which the bases are the triangles AEG, ${ }_{\mathrm{yr}} \mathrm{L}$, and vertices the points H, D. Therefore the whole p^{yr} amid of which the base is the triangle ABC; and vertex the point D , is divided into two equal pyramids similar to one another, and to the whole pyramid ; and into two equal prisms; and the two prisms are together greater than half of the whole pyramid. Q. E. D.

PROP. IV. THEOR.

$\sec \mathrm{N}_{\mathrm{o}}$. IF there be two pyramids of the same altitude, upon triangular bases, and each of them be divided into two equal pyramids similar to the whole pyramid, and also into two equal prisms ; and if each of these pyramids be divided in the same manner as the first two, and so on: As the base of one of the first two pyramids is to the base of the other, so shall all the prisms in one of them be to all the prisms in the other that are produced by the same number of divisions.

Let there be two pyramids of the same altitude upon the triangular bases $\mathrm{ABC}, \mathrm{DEF}$, and having their vertices in the points G, H; and let each of them be divided into two equal pyramids similar to the whole, and into two equal prisms; and let each of the pyramids thus made be conceived to be divided in the like manner, and so on: As the base $A B C$ is to the base DEF , so are all the prisms in the pyramid ABCG to all the prisms in the pyramid DEFH made by the same number of divisions.

Make the same construction as in the foregoing proposition; And because BX is equal to XC , and AL to LC , therefore XL
2. 6.

- 2.2.
c 15. 11.
-17. 11. is parallel ${ }^{2}$ to $A B$, and the triangle $A B C$ similar to the triangle LXC : For the same reason, the triangle DEF is similar to RVF: And because BC is double of CX, and EF double of FV, therefore BC is to CX , as EF to FV : And upon BC, CX are described the similar and similarly situated rectilineal figures $\mathrm{ABC}, \mathrm{LXC}$; and upon EF, FV, in like manner, are described the similar figures DEF, RVF: Therefore, as the triangle $A F C$ is to the triangle $\mathrm{LXC}, \mathrm{so}^{\mathrm{b}}$ is the triangle DEF to the triargle RVF, and, by permutation, as the triangle ABC to the triangle DEF, so is the triangle $L \mathrm{XC}$ to the triangle RVF : Ind because the planes $\mathrm{ABC}, \mathrm{OMN}$, as also the planes DEF, STY are parallecic, the pcrpendiculars drawn from the points G, H to the bases $A B C, D E F$, which, by the hypothesis, are equal to one another, shall be cut each into two equal -parts by the planes OMN, STY, because the straight lines GC, HF are cut into two equal parts in the points N, Y by the same planes: Therefore the prisms LXCOMN, RVFSTY are of the same altitude; and therefore, as the base LXC to
the base RVF; that is, as the triangle ABC to the tiangle Boos XII. $D E F, 50^{2}$ is the prism having the triangle LXC for its base, ${ }_{2}$ Cor. 3 ? and OMN the triangle opposite to it, to the prism of which the. 11 . base is the triangle RVF, and the opposice triangle STY:And because the two prisms in the pyramid ABCG are equal to one another, and also the two prisms in the pyramid DEFH equal to one another, as the prism of which the base is the parallelogram KBXL and opposite side MO , to the prism having the triangle LXC for its base, and OMN the triangle opposite to it ; so is the prism of which the base ${ }^{\mathrm{b}}$ is the paralle- ${ }^{\text {b }} 7.5$. logram, PEVR, and opposite side TS, to the prism of which the base is the triangle RVF, and opposite triangles STY. Therefore, componendo, as the prisms K BXLMO, LXCOMN

together are unto the prism LXCOMN; so are the prisms PEVRTS, RVFSTY to the prism RVFSTY: And permutando, as the prisms KBXLMO, LXCOMN are to the prisms PEVRTS, RVFSTY; so is the prism LXCOMN to the prism RVFSTY: But as the prism LXCOMN to the prism RVFSTY, so is, as has been proved, the base ABC to the base DEF: Therefore, as the base $\triangle B C$ to the base DEF, so are the two prisms in the pyramid ABCG to the two prisms in the pyramid DEFH : And likewise if the pyramids now made, for example, the two OMNG, STYH be divided in the same manner; as the base OMN is to the base STY, so shall the two prisms in the pyramid OMNG be to the two prisms in the pyramid STYH: But the base OMN is to the base STY, as the base ABC to the base DEF ; therefore, as the base ABC to the base DEF, so are the two prisms in the pyramid ABCG

THE ELEMENTS

Book XII, to the two prisms in the pyramid DEFH; and so are the two prisms in the pyramid OMNG to the two prisms in the pyramid STYH; and so are all four to all four: And the same thing may be shewn of the prisms made by dividing the pyramids AKLO and DPRS, and of all made by the same number of divisions. Q.E.D.

PROP. V. THEOR.

seen. Pyramids of the same altitude which have triangular bases, are to one another as their bases.

Let the pyramids of which the triangles $\mathrm{ABC}, \mathrm{DEF}$ are the bases, and of which the vertices are the points G, H, be of the same altitude: As the base ABC to the base DEF, so is the pyramid ABCG to the pyramid DEFH.

For, if it be not so, the base $A B C$ must be to the base DEF, as the pyramid ABCG to a solid either less than the pyramid DEFH, or greater than it*. First, let it be to a solid less than it, viz. to the solid Q: And divide the pyramid DEFH into two equal 'pyramids, similar to the whole, and into two equal prisms. Therefore these two prisms are greater ${ }^{2}$ than the half of the whole pyrannid. And again, let the pyramids made by this division be in like manner divided, and so on, until the pyramids which.remain undivided in the pyramid DEFH be, all of them together, less than the excess of the pyramid DEFH above the solid Q : Let these, for example, be the pyramids DPRS, STYH: Therefore the prisms, which make the rest of the pyramid DEFH, are greater than the solid Q: Divide, likewise the pyramid ABCG in the same manner, and into as many parts, as the pyramid DEFH: Therefore as the base ABC to the base DEF, so ${ }^{\mathrm{b}}$ are the prisms in the pyramid $\triangle B C G$ to the prisms in the pyramid DEFH: But as the base $A B C$ to the base DEF, so, by hypothesis, is the pyramid ${ }^{\prime} A B C G$ to the solid Q; and therefore, as the pyramid ABCG to the solid Q, so are the prisms in the pyramid $\triangle B C G$ to the prisms in the pyramid DEFH: But the pyramid ABCG is greater
c 1 f. 5. than the prisms contained in it ; wherefore ${ }^{\text {c also }}$ the solid Q is greater than the prisms in the pyramid DEFH. But it is also less, which is impossible. Therefore the base ABC is not to

[^11]the base $D E F$, as the pyramid $A B C G$ to any solid which is Boox.xII. less than the pyramid DEFH. In the same manner it may be demonstrated, that the base DEF is not to the base ABC, as the pyramid DEFH to any solid which is less than the pyramid ABCG. Nor can the base ABC be to the base DEF, as the pyramid ABCG to any solid which is greater than the pyramid DEFH. For if it be possible, let it be so to a greater, viz. thesolid Z. And because the base ABC is to the base DEF as the pyramid $A B C G$ to the solid \mathbf{Z}; by inversion, as the base DEF to the base ABC, so is the solid Z to the pyramid ABCG. But as the solid Z is to the pyramid $A B C G$, so is the pyramid

DEFH to some solid*, which must be less ${ }^{7}$ than the pyramid ${ }^{\text {1 }}$ 14. 5. ABCG , because the solid Z is greater than the pyramid DEFH. And therefore, as the base DEF to the base ABC, so is the pyramid DEFH to a solid less than the pyramid ABCG; the contrary to which has been proved. Therefore the base $A B C$ is not to the base DEFH, as the pyramid $A B C G$ to any solid which is greater than the pyramid DEFH. And it has been proved, that neither is the base ABC to the base DEF, as the pyramid ABCG to any solid which is less than the pyramid DEFH. Therefore, as the base ABC is to the base DEF, so is the pyramid ABCG to the pyramid DEFH. Wherefore pyramids, \&xc. Q F. D.

[^12]
PROP. VI. THEOR.

See N.
4. 5.12

P yramids of the same altitude which have polygons for their bases, are to one anuther as their bases.

Let the pyramids which have the polygonsABCDE, FGHKL for their bases, and their vertices in the points M, N be of the same altitude : As the base ABCDE to the base FGHKL, so is the pyramid ABCDEM to the pyramid FGHKLN.

Divide the base $A B C D E$ into the triangles $\triangle B C, A C D$, ADE ; and the base FGHKL into the triangles FGH, FHK, FKL: And upon the bases $\mathrm{ABC}, \mathrm{ACD}, \triangle \mathrm{DE}$ let there be as many pyramids of which the common vertex is the point M, and upon the remaining bases as many pyramids having their common vertex in the point N : Therefore since the triangle ABC is to the triangle FGH , as ${ }^{2}$ the pyramid ABCM to the pyramid FGHN; and the triangle ACD to the triangle $\mathrm{FGH}_{\text {; }}$ as the pyramid $A C D M$ to the pyramid FGHN ; and also the

triangle $A D E$ to the triangle FGH , as the pyramid ADEM to the pyramid FGHN ; as all the first antecedents to their common consequent ; so ${ }^{\text {b }}$ are all the other antecedents to their common consequent ; that is, as the base ABCDE to the base FGH, so is the pyramid ABCDEM to the pyramid FGHN; And for the same reason, as the base FGHKL to the base FGH, so is the pyramid FGHKLN to the pyramid FGHN : And, by inversion, as the base FGH to the base FGHKL, so is the pyramid FGHN to the pyramidFGHKLN: Then, because as the base ABCDE to the base FGH, so is the pyramid ABCDEM - to the pyramid FGHN ; and as the base FGH to the base FGHKL, so is the pyramid FGHN to the pyramid FGHKLN; therefore
therefore, ex requalic, as the base ABCDE to the base Book XII. FGHKL, so the pyramid ABCDEM to the pyramid 2 . 5 . FGHKLN. Therefore pyramids, \&c. Q.E.D.

PROP. VII. THEOR.

EvERY prism liaving a triangular base may be divided into three pyramids that have triangular bases, and are equal to one another.

Let there be a prism of which the base is the triangle $\dot{A} B C$, and let DEF be the triangle opposite to it: The prism ABCDEF may be divided into three equal pyramids having triangular bases.

Join $\mathrm{BD}, \mathrm{EC}, \mathrm{CD}$; and because ABED is a parallelogram of which $B D$ is the diameter, the triangle $A B D$ is equal ${ }^{2}$ to 34.3 . the triangle EBD; therefore the pyramid of which the base is the triangle $A B D$, and veitex the point C, is equalb to the ${ }_{5} 5.12$. pyramid of which the base is the triangle EBD, and vertex the point C: But this pyramid is the same with the pyramid the base of which is the triangle EBC, and vertex the point D; for they are contained by the same planes:- Therefore the pyramid of which the base is the triangle $A B D$, and vertex the point C, is equal to the pyramid, the base of which is the triangle EBC, and vertex the point D: Again, because FCBE is a parallelogram of which the diameter is CE , the triangle ECF is equal ${ }^{2}$ to the triangle FCB; therefore the pyramid of which the base is the triangle ECB, and vertex the point D, is equal to the pyramid the base of which is the triangle ECF, and vertex the point $\mathrm{D}:$ But the pyramid of which the base is the triangle ECB, and vertex the point D, has been proved
 equal to the pyramid of which the base is the triangle $A B D$, and vertex the point C. Therefore the prism $A B C D E F$ is divided into three equal pyramids having triangular bases, viz. into the pyramids ABDC, EBDC, ECED: And because the pyramid of which the base is the triangle ABD, and vertex the point C, is the same with the pyramid of which the base is the triangle $A B C$, and vertex the point D, for they are contained by the same planes; and that the pyramid of which the base is the triangle $A B D$, and vertex the point C, has been

Book XII. demonstrated to be a third part of the prism, the base of which is the triangle ABC , and to which DEF is the opposite triangle ; therefore the pyramid of which the base is the triangle $A B C$, and vertex the point D, is the third part of the prism which has the same base, viz. the triangle $A B C$, and DEF is the opposite triangle. Q. E. D.

Cor. I. From this it is manifest, that every pyramid is the third part of a prism which has the same base, and is of an equal altitude with it; for if the base of the prism be any other figure than a triangle, it may be divided into prisms having triangular bases.

Cor. 2. Prisms of equal altitudes are to one another as their bases; because the pyramids upon the same bases, and of
s6. 12. the same altitude, are ${ }^{c}$ to one another as their bases.

PROP: VIII. THEOR.

Similar pyramids, having' triangular bases, are one to another in the triplicate ratio of that of their homologous sides.

Let the pyramids having the triangles $\mathrm{ABC}, \mathrm{DEF}$ for their bases, and the points G, H for their vertices, be similar, and similarly situated; the pyramid ABCG has to the pyramid DEFH, the triplicate ratio of that which the side BC has to the homologous side EF.

Complete the parallelograms $\mathrm{ABCM}, \mathrm{GBCN}, \mathrm{ABGK}$, and the solid parallelopiped BGML contained by these planes and

those opposite to them: And, in like manner, complete the solid parallelopiped EHPO contained by the thrce parallelograms DEFP, HEFR, DEHX, and those opposite to them: And because
because the pyramid ABCG is similar to the pyramid DEFH, Book XII. the angle $A B C$ is equal ${ }^{2}$ to the angle $D E F$, and the angle ${ }_{11}$.def. 11 GBC to the angle HEF and $A B G$ to $D E H$: And $A B$ is ${ }^{\mathrm{b}}$ to D_{i}. def. ©. BC , as DE to EF ; that is, the sides about the equal angles are proportionals; wherefore the parallelogram BMI is similar to EP: For the same reason, the parallelogram BN is similar to ER, and BK to EX: Therefore the three parallelograms BM, BN, BK are similar to the three EP, ER, EX: But the three $\mathrm{BM}, \mathrm{BN}, \mathrm{BK}$, are equal and similar ${ }^{\text {c }}$ to the three which ' 24.11 . are opposite to them, and the three EP, ER, EX equal and similar to the three opposite to them: Wherefore the solids BGML, EHPO are contained by the same number of similar planes; and their solid angles are equald ; and therefore the ${ }_{d B}$. 11 . solid BGML is similar to the solid EHPO : But similar solid parallelopipeds have the triplicate ${ }^{e}$ ratio of that which their e 33.11 . homologous sides have: Therefore the solid BGML has to the solid EHPO the triplicate ratio of that which the side BC has to the homologous side EF: But as the solid BGML is to the solid EHPO, so is ${ }^{〔}$ the pyramid ABCG to the pyramid ${ }^{15}$ 15. 5. DEFH; because the pyramids are the sixth part of the solids, since the prism, which is the halfs of the solid parallelopiped, $: 88$, it. is triple ${ }^{\text {h }}$ of the pyramid. Wherefore likewise the pyramida 7.12. ABCG has to the pyramid DEFH, the triplicate ratio of that which BC has to the homologous side EF, Q. E. D.

Cor. From this it is evident, that similar pyramids which See 3 . have multangular bases, are likewise to one another in the triplicate ratio of their homologous sides: For they may be divided into similar pyramids having triangular bases, because the similar polygons, which are their bases, may be divided into the same number of similar triangles homologous to the whole polygons ; therefore as one of the triangular pyramids in the first multangular pyramid is to one of the triangular pyramids in the other, so are all the triangular pyramids in the first to all the triangular pyramids in the other; that is, so is the first multangular pyramid to the other: But one triangular pyramid is to its similar triangular pyramid, in the triplicate ratio of their homologous sides; and therefore the first multangular pyramid has to the other, the triplicate ratio of that which one of the sides of the first has to the homologous sides of the other.

THE ELEMENTS

PROP. IX. THEOR.

THE bases and altitudes of equal pyramids laving triangular bases are reciprocally proportional : And triangular pyramids of which the bases and altitudes are reciprocally proportional, are equal to one another.

Let the pyramids of which the triangles $\mathrm{ABC}, \mathrm{DFF}$, are the bases, and which have their vertices in the points G, H, be equal to one another: 'The bases and altitudes of the pyramids ABCG, DEFH are reciprocally proportional, viz. the base ABC is to the base DEF, as the altitude of the pyramid DEFH to the altitude of the pyramid ABCG.

Complete the parallelograms AC, AG, GC, DF, DH, HF ; and the solid, parallelopipeds BGMI, JHPO, contained by

these planes and those opposite to them: And because the pyramid ABCG is equal to the pyramid DEFH, and that the solid BGMC is sextuple of the pyramid ABCG, and the solid EHPO sextuple of the pyramid DEFH; therefore the solid

$$
\text { 2 1. Ax. } 5 \text {. }
$$ BGML is equal ${ }^{3}$ to the solid EHPO: But the bases and alttudes of equal solid parallelopipeds are reciprocally proportionalb; therefore as the base BM to the base EP, so is the altitude of the solid FHPO to the altitude of the solid BGML:

c 15.5. But as the base BM to the base EP, so is ${ }^{c}$ the triangle $A B C$ to the triangle DEF ; therefore as the triangle $A B C$ to the triangle DEF , so is the altitude of the solid EHPO to the altitude of the solid BGML: But the altitude of the solid EHPO is the same with the altitude of the pyramid DEFH; and the altitude of the solid BGML is the same with the altitude of the pyramid

OF EUCLID.

pyramid ABCG: Therefore, as the base ABC to the base DEF, Boon XII: so is the altitude of the pyramid DEFH to the altitude of the pyramid ABCG : Wherefore the bases and altitudes of the pyramids $\mathrm{ABCG}, \mathrm{DEFH}$ are reciprocally proportional.

Again, let the bases and altitudes of the pyramids $A B C G$, DEFH be reciprocally proportional, viz. the base ABC to the base DEF, as the altitude of the pyramid DEFH to the altitude of the pyramid $A B C G$: The pyramid $A B C G$ is equal to the pyramid DEFH.

The same construction being made, because as the base ABC to th: base DEF, so is the altitude of the pyramid DEFH to the altitude of the pyramid ABCG : And as the base ABC to the base DEF, so is the parallelogram BM to the parallelogram EP; therefore the parallelogram BM is to EP, as the altitude of the pyramid DEFH to the altitude of the pyramid ABCG: But the altitude of the pyramid DEFH is the same with the altitude of the solid parallelopiped EHPO; and the altitude of the pyramid ABCG is the same with the altitude of the solid parallelepiped BGML: As, therefore, the base $B M$ to the base EP, so is the altitude of the solid parallelepiped EHPO to the altitude of the solid parallelepiped BGML. But solid parallelopipeds having their bases and altitudes reciprocally proportional, are equal ${ }^{\text {b }}$ to one another. Therefore ${ }^{\circ} 34.11$. the solid parallelepiped BGML is equal to the solid parallelopiped EHPO. And the pyramid ABCG is the sixth part of the solid BGML, and the pyramid DEFH is the sixth part of the solid EHPO. Therefore the pyramid ABCG is equal to the pyramid DEFH. Therefore the bases, \&c. Q. E. D.

PROP. X. THEOR.

Every cone is the third part of a cylinder which has the same base, and is of an equal altitude with it.

Let a cone have the same base with a cylinder, viz. the circle $A B C D$, and the same altitude. The cone is the third part of the cylinder ; that is, the cylinder is triple of the cone.

If the cylinder be not triple of the cone, it must either be greater than the triple, or less than it. First, Let it be greater than the triple; and describe the square $A B C D$ in the circle: this square is greater than the half of the circle $A B C D$ *.

THE ELEMENTS

Boor XII. Upon the square $A B C D$ erect a prism of the same altitude with the cylinder; this prism is greater than half of the cylinder ; because if a square be described about the circle, and a prism erected upon the square, of the same altitude with the cylinder, the inscribed square is half of that circurnscribed; and upon these square bases are erected solid parallelopipeds, viz. the prisms of the' same altitude; therefore 'the prism upoh the square ABCD is the half of the prism upon the square described about the circle: Because they are to one another as their bases ${ }^{\text {a }}$: And the cylinder is less than the prism upon the square described about the circle ABCD : Therefore the prism upon the square $A B C D$ of the same altitude with the cylinder, is greater than half of the cylinder. Bisect the circumferences AB, BC, CD, DA in the points $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$; and join AE , $\mathrm{EB}, \mathrm{BF}, \mathrm{FC}, \mathrm{CG}, \mathrm{GD}, \mathrm{DH}, \mathrm{HA}$: Then, each of the triangles $\mathrm{AEB}, \mathrm{BFC}, \mathrm{CGD}, \mathrm{DHA}$ is greater than the half of the segment of the circle in which it stands, as was shewn in Prop. 2. of this Book. Erect prisms upon each of these triangles of the same altitude with the cylinder; each. of these prisms is greater than half of the segment of the cylinder in which it is; because if, through the points E, F, G, H, parallels be drawn to $A B, B C$, CD, DA, and parallelograms be completed upon the same $A B, B C$,
 CD, DA, and solid parallelopipeds be, erected upon the parallelograms ; the prisms upon the triangles $\mathrm{AEB}, \mathrm{BFC}, \mathrm{CGD}, \mathrm{DHA}$ are the halves of the solid
7. 12. parallelopipeds ${ }^{\text {b }}$. And the segments of the cylinder which are upon the segments of the circle cut off by $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$, are less than the solid parallelopipeds which contain them. Therefore the prisms upon the triangles $\mathrm{AEB}, \mathrm{BFC}, \mathrm{CGD}$, DHA, are greater than half of the segments of the cylinder in which they are; therefore, if each of the circumferences be divided into two equal parts, and straight lines be drawn from the points of division to the extremities of the circumferences, and upon the triangles thus made, prisms be erected of the same altitude with the cylinder, and so on, there must at length remain some segments of the cylinder which together are less, ${ }^{c}$. than the excess of the cylinder above the triple of the cone, Let them be those upon the segments of the circle $A E, E B, B F$. FC,

OF EUCLID.

$\mathrm{FC}, \mathrm{CG}, \mathrm{GD}, \mathrm{DH}, \mathrm{HA}$. Therefore the rest of the cylinder, that is, the prism of which the base is the polygon AEBFCGDH, and of which the altitude is the same with that of the cylinder, is greater than the triple of the cone: But this prism is tripled of the pyramid upon the same base, of which the vertex is the same with the vertex of the cone; therefore Cor. 7. the pyramid upon the base AEBFCGDH, having the same vertex with the cone, is greater than the cone, of which the base is the circle ABCD: But it is also less, for the pyramid is contained within the cone; which is impossible. Nor can the cylinder be less than the triple of the cone. Let it be less, if possible: therefore, inversely, the cone is greater than the third part of the cylinder. In the circle $A B C D$ describe a square ; this square is greater than the half of the circle: And upon the square $A B C D$ erect a pyramid, having the same vertex with the cone: this pyramid is greater than the halfof the cone; because, as was before demonstrated, if a square be described about the circle, the square ABCD is the half of it; and if upon these squares there be erected solid parallelopipeds of the same altitude with the cone, which are also prisms, the prism upon the square $A B C D$ shall be the half of that which is upon the square, described about the circle; for they are to one another as their basese ; as are also the third parts of them: Therefore
 the pyramid, the base of which is the square $A B C D$, is half of the pyramid upon the square described about the circle: But this last pyramid is greater than the cone which it contains; therefore the pyramid upon the square $A B C D$, having the same vertex with the cone, is greater than the half of the cone. Bisect the circumferences $A B$, $B C, C D, D A$ in the points E, F, G, H, and join $A E, E B$, $\mathrm{BF}, \mathrm{FC}, \mathrm{CG}, \mathrm{GD}, \mathrm{DH}, \mathrm{HA}$: Therefore each of the triangles $\mathrm{AEB}, \mathrm{BFC}, \mathrm{CGD}, \mathrm{DHA}$ is greater than half of the segment of the circle in which it is: Upon each of these triangles erect pyramids having the same vertex with the cone. Therefore each of those pyramids is greater than the half of the segment of the cone in which it is, as before was demonstrated of the prisms and segments of the cylinder; and thus dividing each of the circumferences into two equal parts, and joining the

Book XII. points of division and their extremities by straight lines, and upon the triangles erecting pyramids having their vertices the same with that of the cone, and so on, there must at length remain some segments of the cone, which together shall be less than the excess of the cone, above the third part of the cylinder. Let these be the segments upon AE, EB, BF, FC, CG, GD, DH, HA. Therefore the rest of the cone, that is, the pyramid, of which the base is the polygon AEBFCGDH, and of which the vertex is the same with that of the cone, is greater than the third part of the cylinder. But this pyramid is the third part of the prism upon the same base AEBFCGDH, and of the same altitude with the cylinder. Therefore this prism is great-
 er than the cylinder of which the base is the circle ABCD. But it is also less, for it is contained within the cylinder; which is impossible. Therefore the cylinder is not less than the triple of the cone. And it has been demonstrated that neither is it greater than the triple. Therefore the cylinder is triple of the cone, or, the core is the third part of the cylinder. Wherefore every cone, \&c. Q. E. D.

PRÓP. XI. THEOR.

Set N. CONES and cylinders of the same altitude, are to one another as their bases.

Let the cones and cylinders, of which the bases are the circles ${ }^{-} \mathrm{ABCD}, \mathrm{EFGH}$, and the axes KL, MN, and AC, EG the diameters of their bases, be of the same altitude. As the circle ABCD to the circle EFGH, so is the cone AL to the cone EN.

If it be not so, let the circle ABCD be to the circle EFGH, as the cone AL to some solid either less than the cone EN, or greater than it. First, let it be to a solid less than EN, viz. to the solid X; and let Z be the solid which is equal to the excess of the cone EN above the solid X ; therefore the cone EN is squal to the solids X, Z together. In the circle EFGH describe the square EFGH, therefore this square is greater than the half of the circle: Upon the square EFGH ered a pyramid of the same altitude with the cone; this pyramid is greater than half of the cone. For, if a square be described about the circle, and a pyramid be erected upon it, having
having the same vertex with the cone*, the pyramid inscribed Boos XII. in the cone is, half to the pyramid circunsscribed about it, because they are to one another as their bases ${ }^{2}$: But the cone ${ }^{2} 6.12$. is less than the circumscribed pyramid; therefore the pyramid of which the base is the square EFGH, and its vertex the same with that of the cone, is greater than half of the cone: Divide the circumferences $\mathrm{EF}, \mathrm{FG}, \mathrm{GH}, \mathrm{HE}$, each into two equal parts in the points $\mathrm{O}, \mathrm{P}, \mathrm{R}, \mathrm{S}$, and join $\mathrm{EO}, \mathrm{OF}, \mathrm{FP}, \mathrm{PG}$, GR, RH, HS, SE: Therefore each of the triangles EOF, FPG, GRH, HSE is greater than half of the segment of the

circle in which it is: Upon each of these triangles erect a pyramid having the same vertex with the cone; each of these pyramids is greater than the half of the segment of the cone in which it is: And thus dividing each of these circumferences into two equal parts, and from the points of division drawing straight lines to the extremities of the circumference, and upon each of the triangles thus made erecting pyramids, having the same vertex with the cone, and so on, there must at length remain some segments of the cone which are together less ${ }^{\text {b }}$ Lea. I. than the solid Z : Let these be the segments upon $\mathrm{EO}, \mathrm{OF}, \mathrm{FP}$,

$$
\mathrm{PG} \text {, }
$$

[^13]Book XII. PG, GR, RH, HS, SE: Therefore the remainder of the cone, viz. the pyramid of which the base is the polygon EOFPGRHS, and its vertex the same with that of the cone, is greater than the solid. X : In the circle ABCD describe the polygon ATBYCVD,Q similar to the polygon EOFPGRHS, and upon it erect a pyramid having the same vertex with the cone AL:
-1. 12.
-2. 12.
c 11. 5. 'And because as the square of $A C$ is to the square of $E G, \mathrm{so}^{2}$ is the polygon ATBYCVDQ to the polygon EOFPGRHS; and as the square of $A C$ to the square of $E G$, so is ${ }^{\text {b }}$ the circle $A B C D$ ta the circle EFGH ; therefore the circle $A B C D^{c}$ is to the circle EFGH, as seepolygon ATBYCVDQ to the polygon

EOFPGRHS: But as the circle ABCD to the circle EFGH, so is the cone AL to the solid X : and as the polygon ATBYCVDQ to the polygon EOFPGRHS, so is ${ }^{\text {d }}$ the pyramid of which the base is the first of these polygons, and vertex L , to the pyramid of which the base is the other polygon, and its vertex N: Therefore, as the cone AL to the solid X, so is the pyramid of which the base is the polygon ATBYCVDQ, and vertex L , to the pyramid the base of which is the polygon EOFPGRHS, and vertex N: But the cone AL is greater than the pyramid contained in it ; therefore the solid X is greater ${ }^{\mathrm{c}}$ than the pyramid in the coneEN. But it is less, as was shewn, which

OF EUCLID.

which is absurd: Therefore the circle ABCD is not to the Boos X1. circle EFGH, as the cone AL to any solid which is less than the cone EN. In the same manner it may be demonstrated, that the circle EFGH is not to the circle ABCD , as the cone EN to any solid less than the cone AL. Nor can the circle ABCD be to the circle EFGH, as the cone AL to any solid greater than the cone EN : For, if it be possible, let it be so to the solid I, which is greater than the cone EN: Therefore, by inversion, as the circle EFGH to the circle ABCD , so is the solid I to the cone AL: But as the solid I to the cone AL, so is the cone EN to some solid, which must be lessa than the cone AL, because the solid I is greater than ${ }^{2} 14$. 5% the cone EN: Therefore, as the circle EFGH is to the circle ABCD , so is the cone EN to a solid less than the cons AL, which was shewn to be impossible: Therefore the circle ABCD is not to the circle EFGH, as the cone AL is to any solid greater than the cone EN: And it has been demonstrated, that neither is the circle $A B C D$ to the circle EFGH, as the cone AL to any solid less than the cone EN: Therefore the circle ABCD is to the circle EFGH, as the cone AL to the cone EN: But as the cone is to the cone, $s 0^{b}$ is the $c y-D 15.5$. linder to the cylinder, because the cylinders are triple ${ }^{e}$ of the c 10.12 . cone, each to each. Therefore as the circle ABCD to the circle EFGH, so are the cylinders upon them of the same altitude. Wherefore cones and cylinders of the same altitude are to one another as their bases. Q. E. D.

PROP. XII. THEOR.

Similar cones and cylinders have to one ano-see N. . ther the triplicate ratio of that which the diameters of their bases have.

Let the cones and cylinders of which the bases are the circles $A B C D, E F G H$, and the diameters of the bases $A C, E G$, and KL, MN, the axis of the cones or cylinders, be similar: The cone of which the base is the circle ABCD, and vertex the point L , has to the one of which the base is the circle EFGH, and vertex N , the triplicate ratio of that which AC has to EG.

For if the cone ABCDL has not to the cone EFGHN the triplicate ratio of that which AC has to EG, the cone ABCDL shall have the triplicate of that ratio to some solid which is less or greater than the cone EFGHN. First, let it have it to a less,
$\underbrace{\text { Boor X11. viz to the solid X. Make the same construction as in the pere- }}$ ceding proposition, and it may be demonstrated the very same way as in that proposition, that the pyramid of which the base is the polygon EOFPGRHS, and vertex N , is greater than the solid X. Describe also in the circle ABCD the polygon ATBYCVDQ similar to the polygon EOFPGRHS, upon which erect a pyramid having the same vertex with the cone; and let LAQ be one of the triangles containing the pyramid upon the polygon ATBYCVDQ, the vertex of which is L; and let NES be one of the triangles containing the

pyramid upon the polygon EOFPGRHS of which the ertex is N ; and join KQ, MS: Because then the cone ${ }^{2} 24$ def.11. ABCDL is similar to the cone EFGHN, 1 C is to EG as b 15.5 . The axis KL to the axis MN ; and as AC to EG, so° is AK to EM ; therefore as AK to EM, so is KL to MN; and, alternately, AK to KL, as EM to MN: And the right angles AKL, EMN are equal ; therefore the sides about these equal angles being proportionals, the triangle AKL is similar ${ }^{c}$ to the triangle EMN. Again, because AK is to KQ , as EM to MS , and that these sides are about
about equal angles $A K Q$, EMS, because these angles are, BoosXIr, each of them, the same part of four right angles at the centres $\mathrm{K} ; \mathrm{M}$; therefore the triangle AKQ is similar ${ }^{2}$ to the triangle $=6.6$. EN'S: And because it has been shown that as AK to KL, so is EM to MN, and that AK is equal to $K Q$; and EM to MS; as QK to KL, so is SM to MN : and therefore the sides about the right angles QKL, SMN being proportionals, the triangle LKQ is similar to the triangle NMS : and because of the similarity of the triangles AKL, EMN, as LA is to AK, so is NE to E.M; and by the similarity of the triangles $A K Q$, EMS, as KA to AQ , so ME to ES; ex æqualib, LA is ${ }^{\circ}$?2. 工. to $A Q$, as NE to ES. Again, because of the similarity of the triangles LQK, NSM, as LQ to QK, so NS to SM ; and from the similarity of the triangles $K A Q$, MES, as $K Q$ to QA, so MS to SE ; ex equali, LQ is to QA , as NS to SE: And it was proved that QA is to $A L$, as $S \mathrm{SF}$, to EN ; therefore, again, ex æquali as QL to LA, so is SN to NE: Wherefore the triangles LQ1, NSE, having the sides about all their angles proportionals, are equiangulare and similar to one ${ }^{\text {c } 5.6 .}$ another: And therefore the pyramid of which the base is the triangle AKQ , and vertex L , is similar to the pyramid the base of which is the triangle EMS, and vertex N, because their soiid angles are equald to one another, and they are contained ${ }^{d}$ B. 11. by the same number of similar planes: But similar pyramids which have-triangular bases have to one another the triplicate 'ratio of that which their homologous sides̀ have; therefore es. 1 ?. the pyramid AKOL has to the pyramid EMSN the triplicate ratio of that which AK has to EM. In the same manner, if straight lines be drawn from the points $\mathrm{D}, \mathrm{V}, \mathrm{C}, \mathrm{Y}, \mathrm{B}, \mathrm{T}$, to K , and from the points $\mathrm{H}, \mathrm{R}, \mathrm{G}, \mathrm{P}, \mathrm{F}, \mathrm{O}$, to M , and py ramids be erected upon the triangles having the same vertices with the cones, it may be demonstrated that each pyramid in the first cone has to each in the other, taking them in the same order, the triplicate ratio of that which the side AK has to the side EM ; that is, which AC has to EG: But as one antecedent to its consequent, so are all the antecedents to all the consequents ${ }^{\mathfrak{f}}$; therefore as the pyramid AKQL to the pyra- ${ }^{\mathrm{f}} 12.5$. mid EMSN, so is the whole pyramid the base of which is the polygon DQATBYCV, and vertex L, to the whole pyramid of which the base is the polygon HSEOFPGR, and vertex N. Wherefore also the first of these two last-named pyramids has to the other the triplicate ratio of that which AC has to EG. But, by the hypothesis, the cone of which the base is the circle $A B C D$, and vertex L, has to the solid X, the triplicate ratio of that which $A C$ has to $E G$; therefore, as the cone of

THE ELEMENTS

Boor XII. which the base is the circle $A B C D$, and vertex L, is to the solid X , so is the pyramid the base of which is the polygon DQATBYCV, and vertex L, to the pyramid the base of which is the polygon HSEOFPGR and vertex N : But the said cone is greater than the pyramid contained in it, therefore the solid X is greater ${ }^{3}$ than the pyramid, the base of which is the polygon HSEOFPGR, and vertex N ; but it is also less, which is impossible: therefore the cone, of which the base is the circle

$A B C D$ and vertex L, has not to any solid which is less than the cone of which the base is the circle EFGH and vertexN, the triplicate ratio of that which AC has to EG. In the same manner it may be demonistrated, that neither has the conc EFGHN to any solid which is less than the cone ABCDL , the triplicate ratio of that which EG has to AC. Nor can the cone ABCDL have to any solid which is greater than the cone EFGHN, the triplicate ratio of that which AC has to EG: For, if it be possible, let it have it to a greater, viz. to the solid Z : Therefore, inversely, the solid Z has to the cone $A B C D L$, the triplicate ratio of that which EG has to AC : But as the solid \mathbb{Z} is to
the cone ABCDL, so is the cone EFGHN to some solid; which Boos Nit. must be less ${ }^{3}$ than the cone ABCDL, because the solid Z is 15.5 . greater than the cone EFGHN : Therefore the cone EFGHN has to a solid which is less than the cone ABCDL, the triplicate ratio of that which EG has to AC, which was demonstriated to be impossible: therefore the cone ABCDL has not to any solid greater than the cone EFGHN, the triplicate ratio of that which AC has to EG; and it was demonstrated, that it could not have that ratio to any solid less than the cone EFGHN : Therefore the cone ABCDL has to the cone EFGHN, the triplicate ratio of that which AC has to EG: But as the cone is to the cone, $s 0^{\text {b }}$ the cylinder to the cylinder; ${ }^{\circ}$ 15.5. for every cone is the third part of the cylinder upon the same base, and of the same altitude: Therefore also the cylinder has to the cylinder, the triplicate ratio of that which AC has to EG: Wherefore similar cones, \&c. Q. E. D.

PROP. XIII. THEOR.

IF a cylinder be cut by a plane parallel to its oppo- See N. site planes, or bases ; it divides the cylinder into two cylinders, one of which is to the other as the axis of the first to the axis of the other.

Let the cylinder AD be cut by the plane GH parallel to the opposite planes $A B, C D$, meeting the axis $E F$ in the point K, and let the line GH be the common section of the plane GH and the surface of the cylin$\operatorname{der} A D:$ Let AEFC be the parallelogram in any position of it, by the revolution of which about the straight line EF the cylinder AD is described: and let GK be the common section of the plane GH, and the plane AEFC: And because the parallel planes $A B, G H$, are cut by the plane AEKG, AE, KG , their common sections with it are parallel ${ }^{2}$; wherefore AK is a parallelogram, and GK equal to EA the straight line from the centre of the circle $A B:$ For the same reason, each of the straight lines

drawn

THE ELEMENTS

Book:XiI.
drawn from the point K to the line GH may be proved to be equal to those, which are drawn from the centre of the circle $A B$ to its circumference, and are therefore all equal to one another.

- 15. def.1. Therefore the line GH is the circumference of a circle ${ }^{2}$; of which the centre is the point K : Therefore the plane GH divides the cylinder AD into the cylinders AH, GD; for they are the same which would be described by the revolution of the parallelograms AK, GF, about the straight lines EK, KF : And it is to be shewn, that the cylinder AH is to the cylinder HC, as the axis EK to the axis KF.

Produce the axis EF both ways; and take any number of straight lines EN_{2}, NL, each equal to EK ; and any number FX, XM, each equal to HK ; and let planes parallel to $A B, C D$ pass through the points $\mathrm{L}, \mathrm{N}, \mathrm{X}, \mathrm{M}$: Therefore the common sections of these planes. with the cylinder produced are circles the centres of which are the points $\mathrm{L}, \mathrm{N}, \mathrm{X}, \mathrm{M}$, as was proved of the plane GH; and these planes cut off the cylinders $P R, R B, D T, T Q$: And because the axes LN, NE, EK are all equal ; therefore the cylinders PR, RB, BG are ${ }^{b}$ to one another as their bases; but their bases are equal, and therefore the cylinders PR, RB, $B G$ are equal: And because the axes $\mathrm{LN}, \mathrm{NE}, \mathrm{EK}$ are equal to one another, as also the cylinders $\mathrm{PR}, \mathrm{RB}, \mathrm{BG}$, and that there are as many axes as cylinders; therefore, whatever multiple the axis KL is of the axis KE, the same
 multiple is the cylinder PG of the cylinder GB: For the same reason, whatever multiple the axis MK is of the axis KF, the same multiple is the cylinder QG of the cylinder GD: And if the axis KL be equal to the axis $K M$, the cylinder PG is equal to the cylinder $G Q$; and if the axis KL be greater than the axis KM, the cylinder PG is greater than the cylinder QG; and if less, less: Since, therefore there are four maynitudes, viz. the axis EK, KF, and the cylinders BG, GD, and that of the axis EK and cylinder $B G$, there has been taken any equimultiples whatever, viz. the

OFEUCLID.

2xis KL and cylinder PG; and of the axis KF and cylinder Boox XII. GD, any equimultiples whatever, viz. the axis KM and cylinder GQ; and it has been demonstrated, if the axis KL be greater than the axis KM, the cylinder PG is greater than the cylinder GQ; and if equal, equal; and if less, less: Therefore ${ }^{\text {d }}$ the axis EK is to the axis KF, as the cylinder BG to the 45. def.5. eylinder GD. Wherefore, if a cylinder, \&c. Q. E. D.

PROP. XIV. THEOR.

Cones and cylinders upon equal bases are to one another as their altitudes.

Let the cylinders $E B, F D$ be upon the equal bases $A B$, CD : As the cylinder EB to the cylinder FD , so is the axis GH to the axis KL.

Produce the axis KL to the point N, and make LN equal to the axis GH, and let CM be a cylinder of which the base is CD , and axis LN ; and because the cylinders EB, CM have the same alsitude, they are to one another as their bases ${ }^{2}$: But a 11.12. their bases are equal, therefore also the cylinders EB, CM are equal: And because the cylin$\operatorname{der} F M$ is cut by the plane CD parallel to its opposite planes, as the cylinder CM to the cylinder FD so is the axis LN to the axis KL. But the cylinder CM is equal to the cylinder EB, and the axis LN to the axis GH: Therefore as the cylinder ${ }^{-E B}$ to the cylinder FD, so is the axis GH to the axis KL: And as
 the cylinder EB to the cylinder FD, so ise the cone ABG to c 15.5 . the cone CDK, because the cylinders are triple ${ }^{d}$ of the cones: A 10.18. , Therefore also the axis GH is to the axis KL , as the cone ABG to the cone CDK, and the cylinder EB to the cylinder FD. Wherefore cones, \& c. Q. E. D.

Boox XII.
The bases and altitudes of equal cones and cylin-

PROP. XV. THEOR.

 ders, are reciprocally proportional; and if the bases and altitudes be reciprocally proportional, the cones and cylinders are equal to one another.Let the circles ABCD, EFGH, the diameters of which are AC, EG, be the bases, and KL, MN the axis, as also the altitudes, of equal cones and cylinders; and let ALC, ENG be the cones, and AX, EO the cylinders: The bases and altitudes of the cylinders AX, EO are reciprocally proportional ; that is, as the base ABCD to the base EFGH, so is the altitude MN to the altitude KL.

Either the altitude MN is equal to the altitude KL , or these altitudes are not equal. First, let them be equal ; and the cylinders AX, EO being also equal, and cones and cylinders of the
-11. 12. same altitude being to one another as their bases ${ }^{2}$, therefore the base ABCD is equal ${ }^{\text {b }}$ to the base EFGH; and as the base ABCD is to the base EFGH , so is the altitude MN to the altitude KL.
But let the altitudes KL, MN, be unequal, and MN the greater of the two, and from MN take MP equal to KL , and through the point P cut the cylinder EO by the plane TYS, parallel to the
 opposite planes of the circles EFGH, RO; therefore the common section of the plane TYS and the cylinder EO is a circle, and consequently ES is a cylinder, the base of which is the circle EFGH, and altitude MP : And because the cylinder $A X$ is equal to the cylinder EO, as $A X$ is to the cylin-
c\%. 5. der ES, so ${ }^{c}$ is the cylinder EO to the same ES: But as the cylinder AX to the cylinder $\mathrm{ES}, \mathrm{so}^{2}$ is the base ABCD to the base EFGH ; for the cylinders AX, ES are of the same
13. 12. altitude; and as the cylinder EO to the cylinder ES, sod is the altitude MN to the altitude MP, because the cylinder

OF EUCLID.

EO is cut by the plane TYS parallel to its opposite planes. Boor XII. Therefore as the base ABCD to the base EFGH, so is the altitude $M N$ to the altitude $M P$: But MP is equal to the attitude KL ; wherefore as the base ABCD to the base EFGH, so is the altitude MN to the altitude KL ; that is, the bases and altitudes of the equal cylinders AX, EO are reciprocally proportional.

But let the bases and altitudes of the cylinders AX, EO, be reciprocally proportional, viz. the base $A B C D$ to the base EFGH , as the altitude MN to the altitude KL : The cylin$\operatorname{der} \mathrm{AX}$ is equal to the cylinder EO .

First, Let the base ABCD be equal to the base EFGH; then because as the base $A B C D$ is to the base EFGH, so is the altitude MN to the altitude KL; MN is equal ${ }^{\text {b }}$ to KL, ${ }^{\text {b }}$ A. 5. and therefore the cylinder AX is equal ${ }^{2}$ to the cylinder EO. ${ }^{113.12 .}$

But let the bases ABCD, EFGH be unequal, and let $A B C D$ be the greater; and because, as $A B C D$ is to the base EFGH, so is the altitude MN to the alcitude KL ; therefore MN is greater ${ }^{\text {b }}$ than KL. Then, the same construction being made as before, because as the base ABCD to the base EFGH, so is the altitude MN to the altitude KL; and because the altitude KL is equal to the altitude MP ; therefore the base ABCD is ${ }^{2}$ to the base EFGH, as the cylinder AX to the cylinder ES; and as the altitude MN to the altitude MP or KL, so is the cylinder EO to the cylinder ES: Therefore the cylinder AX is to the cylinder ES, as the cylinder EO is to the same ES: Whence the cylinder AX is equal to the cylinder EO; and the same reasoning holds in cones. Q.E.D.'

PROP. XVI. PROB.

To describe in the greater of two circles' that have the same centre, a polygon of an even number of equal sides, that shall not meet the lesser circle.

Let $\mathrm{ABCD}, \mathrm{EFGH}$ be two given circles having the same centre K: It is required to inscribe in the greater circle ABCD , a polygon of an even number of equal sides, that shall not meet the lesser circle.

Through the centre K draw the straight line BD , and from Whe point G , where it meets the circumferences of the lesser

Buox XII. circle, draw GA at right angles to BD , and produce it to C ; - 16. 3. therefore AC touches ${ }^{\mathrm{a}}$ the circle EFGH: Then, if the circumference BAD be bisected, and the half of it be again bisected, and so on, there must at length remain a circumference less ${ }^{\text {b }}$ than AD: Let this be L.D; and from the point L draw LM perpendicular to BD , and produce it to N ; and join LD, DN. Therefore LD is equal to DN ; and because LN is parallel to AC , and that AC touches the circle EFGH; therefore LN does not meet the circle EFGH. And much less shall the straight lines
 LD, DN meet the circle EFGH : So that if straight lines equal to LD be applied in the circle $A B C D$ from the point L around to N, there shall be described in the circle a polygon of an even number of equal sides not meeting the lesser circle. Which was to be done.

LEMMA II.

IF two trapeziums $\mathrm{ABCD}, \mathrm{EFGH}$ be inscribed in the circles, the centres of which are the points K, L; and if the sides AB, DC be parallel, as also EF, HG; and the other four sides $\mathrm{AD}, \mathrm{BC},-\mathrm{EH}$, FG, be all equal to one another; but the side AB greater than EF, and DC greater than HG. The straight line KA from the centre of the circle in which the greater sides are, is greater than the straight line LE drawn from the centre to the circumference of the other circle.

If it be possible, let KA be not greater than LE; then KA must be either equal to it, or less. First, let KA be equal to LE: Therefore, because in two equal circles $A D, B C$, in the one, are equal to EH, FG in the other, the circumferences AD, BC are equala to the circumferences EH, FG; but. because the straight lines $A B, D C$ are respectively greater than EF, GH, the circumferences AB, DC are greater than EF , HG: Therefore the whole circumference ABCD is greater than the whole EFGH; but it is also equal to it, which is impossible :
impossible: Therefore the straight line KA is not equal to Boor XII. LE.

But let KA be less than LE, and make LM equal to KA, and from the centre L , and distance LM, describe the circle MNOP, meeting the straight lines LE, LF, LG, LH, in M, $\mathrm{N}, \mathrm{O}, \mathrm{P}$; and join $\mathrm{MN}, \mathrm{NO}, \mathrm{OP}, \mathrm{PM}$, which are respectuvely parallel ${ }^{2}$ to and less than EF, FG, GH, HE: Then : 2. 6. because EH is greater than MP, AD is greater than MP ; and

the circles $A B C D$, MNOP are equal ; therefore the circumference $A D$ is gteater than MP; for the same reason, the circumference DC is greater than NO; and because the straight line $A B$ is greater than $E F$, which is greater than $M N$, much more is $A B$ greater than $M N$: Therefore the circumference AB is greater than MN ; and, for the same reason, the circumference DC is greater than PO: Therefore the whole circumference $A B C D$ is greater than the whole MNOP; but it is likewise equal to it, which is impossible: Therefore KA is not less than LE: nor is it equal to it; the straight line KA must therefore be greater than LE. Q. E. D.

Cor. And if there be an isosceles triangle, the sides of which are equal to $A D, B C$, but its base less than $A B$ the greater of the two sides AB, DC; the straight line KA may, in the same manner, be demonstrated to be greater than the straight line drawn from the centre to the circumference of the circle described about the triangle.

THE ELEMENTS

PROP. XVII. PROB.

To describe in the greater of two spheres which have the same centre, a solid polyhedron, the superficies of which shall not meet the lesser sphere.

Let there be two spheres about the same centre A; it is required to describe in the greater a solid polyhedron, the superficies of which shall not meet the lesser sphere.

Let the spheres be cut by a plane passing through the centre; the common sections of it with the spheres shall be circles; because the sphere is described by the revolution of a semicircle about the diameter remaining unmoveable; so that in whatever position the semicircle be conceived, the common section of the plane in which it is with the superficies of the sphere is the circumference of a circle: and this is a great circle of the sphere, because the diameter of the sphere, which is likewise

- 15.3.
- 16.12.
c 18.11. the diameter of the circle, is greater ${ }^{2}$ than any straight line in the circle or sphere: Let then the circle made by the section of the plane with the greater sphere be BCDE , and with the lesser sphere be FGH ; and draw the two diameters BD, CE, at right angles to one another ; and in BCDE, the greater of the two circles, describe ${ }^{\mathrm{b}}$ a polygon of an even number of equal sides not meeting the lesser circle FGH ; and let its sides, in BE the fourth part of the circle, be BK, KL, LM, ME ; join $K A$, and produce it to N; and from A draw $A X$ at right angles to the plane of the circle $B C D E$, meeting the superficies of the sphere in the point X; and let planes pass through AX , and each of the straight lines BD, KN, which, from what has been said, shall produce great circles on the superficies of the sphere; and let BXD, KXN be the semicircles thus made upon the diameters BD, KN: Therefore, because XA is at right angles to the plane of the circle $B C D E$, every plane which passés through XA is at righte angles to the plane of the circle BCDE ; wherefore the semicircles $\mathrm{BXD}, \mathrm{KXN}$ are at right angles to that plane : And because the semicircles BED, $\mathrm{BXD}, \mathrm{KXN}$, upon the equal diameters BD, KN, are equal to one another, their halves $\mathrm{BE}, \mathrm{BX}, \mathrm{KX}$, are equal to one another: Therefore, as many sides of the polygon as are in BE , so many there are in BX, KX equal to the sides BK , KL, LM, ME': Let these polygons be described, and their sides be $B O, O P, P R, R X ; K S, S T, T Y, Y X$, and join

OS, PT, RY ; and from the points O, S draw OV, SQ per- Book XII. pendiculars to $A B, A K$: And because the plane $B O X D$ is at right angles to the plane BCDE , and in one of them BOXD , $O \mathrm{~V}$ is drawn perpendicular to AB the common section of the plaries, therefore OV is perpendicular to the plane BCDE : For the same reason \mathbb{Q} is perpendicular to the same plane, because the plane KSXN is at right angles to the plane BCDE . Join VQ; and because in the equal semicircles BXD, KXN

the circumferences, $B O, K S$ are equal, and $O V, S Q$ are perpendicular to their diameters, therefore ${ }^{d} \mathrm{OV}$ is equal to $\mathrm{SQ}{ }^{\mathrm{d}}$ §6. 2. and $B V$ equal to $K Q$. But the whole $B A$ is equal to the whole KA , therefore the remainder VA is equal to the remainder QA: As therefore BV is to VA, so is KQ to QA, wherefore $V Q$ is parallel ${ }^{\text {c }}$ to BK : And because OV, SQ are each of ${ }^{2} 2.6$. them at right angles to the plane of the circle $B C D E, O V$ is parallel ${ }^{f}$ to $S Q$; and it has been proved, that it is also equal ${ }^{~}{ }^{6} 6.11$. to it ; therefore QV, SO are equal and parallel s : And because $\mathrm{E}_{3} 3 \mathrm{~s}$. 1 . QV is parallel to SO, and also to KB; OS is parallel ${ }^{\text {b }}$ to $B K ;{ }^{\circ} 9.11$. and therefore BO, KS which join them are in the same plane
$\underbrace{\text { Boox XII, in which these parallels are, and the quadrilateral figure } \mathrm{KBOS}}$ is in one plane: And if BP, TK be joined, and perpendiculars be drawn from the points P, T to the straight lines $A B, A K$, it may be demonstrased, that TP is parallel to KB in the very same way that SO was shewn to be parallel to the same $K B$;
-9. 11. wher fore ${ }^{2}$ TP is parallel to SO , and the quadrilateral figure SUPT is in one plane: For the same reason the quadrilateral TPRY is in one plane: and the figure YRX is also in one

D2. 11.
planeb. Therefore, if from the points $\mathrm{O}, \mathrm{S}, \mathrm{P}, \mathrm{T}, \mathrm{R}, \mathrm{Y}$, there be drawn straight lines to the point Λ, there shall be formed 2 solid polyhedron between the circumferences BX, KX, composed of py ramids, the bases of which are the quadrilaterals KBOS, SOFT, TPRY, and the triangle YRX, and of which the common vertex is the point A: And if the same construction be made upon each of the sides KL, LM, ME, as has been done upon BK, and the like be done also in the other three quadrants, and in the other hemisphere; there shall be formed a solid polyhedron described in the sphere, composed of pyramids, the bases of which are the aforesaid quadri-
lateral figures, and the triangle YRX, and those formed in Boor XIr. the like manner in the rest of the sphere, the common vertex of them all being the point A : and the superficies of this solid polyhedron doës not meet the lesser sphere in which is the circle FGH: For, from the point $A d r a w^{2} A Z$ perpendicular ${ }^{2}$ 11. 11. to the plane of the quadrilateral KBOS, meeting it in Z , and join BZ, ZK : And because AZ is perpendicular to the plane KBOS, it makes right angles with every straight line meeting it in that plane; therefore $\mathrm{A} Z$ is perpendicular to BZ and ZK : And because $A B$ is equal to $A K$, and that the squares of $A Z$, $Z B$, are equal to the square of $A B$; and the squares of $A Z$, ZK to the square of AK^{b}; therefore the squares of $\mathrm{AZ}, \mathrm{ZB} \cdot 47$. . are equal to the squares of AZ, ZK : Take from these equals the square of $A Z$, the remaining square of $B Z$ is equal to the remaining square of $Z K$; and therefore the straight line $B Z$ is equal to ZK: In the like manner it may be demonstrated, that the straight lines drawn from the point Z to the points O, S are equal to BZ or ZK : Therefore the circle described from the centre Z, and distance $Z B$, shall pass through the points K, O, S, and KBOS shall be a quadrilateral figure in the circle: And because $K B$ is greater than QV , and QV equal to SO , therefore KB is greaier than SO : But KB is equal to each of thestraight lines BO, KS; wherefore each of the circumferences cut off by KB, BO, KS is greater than that cut off by OS; and these three circumferences, together with a fourth equal to one of them, are greater than the same three together with that cut off by OS ; that is, than the whole circumference of the circle ; therefore the circumference subtended by KB is greater than the fourth part of the whole circumference of the circle KBOS , and consequently the angle BZK at the centre is greater than a right angle: And because the angle BZK is obtuse, the square of $B K$ is greater ${ }^{c}$ than the squares of $B Z, Z K$; ${ }^{c}$ 12. 2. that is, greater than twice the square of $B Z$. Join $K V$, and becaus in the triangles $\mathrm{KBV}, \mathrm{OBV}, \mathrm{KB}, \mathrm{BV}$ are equal to OB , $B V$, and that they contain equal angles; the angle $K B V$ is equald to the angle OVB: And OVB is a right angle; there- 44. 1. fore also KVB is a right angle: And because BD is less than twice DV ; the rectangle contained by DB, BV is less than twice the rectangle $D \vee B$; that ise, the square of $K B$ is less e 8.6 . than twice the square of $K V$: But the square of $K B$ is greater than twice the square of $B Z$; therefore the square of $K V$ is greater than the square of $B Z$: And because $B A$ is equal to $A K$, and that the squares of $B Z, Z A$ are equal together to the square of $B A$, and the squares of $K V, V A$ to the square of

Boor XII. AK ; therefore the squares of $\mathrm{BZ} ; \mathrm{ZA}$ are equal to the squares of $K V, V A$; and of these the square of $K V$ is greater than the square of $B Z$; therefore the square of VA is less than the square of $Z A$, and the straight line $A Z$ greater than $V A$: Much more then is $A Z$ greater than $A G$; because, in the preceding proposition, it was shewn that KV falls without the circle FGH: And $A Z$ is perpendicular to the plane $K B O S$, and is therefore the shortest of all the straight lines that can be drawn from A, the centre of the sphere to that plane. Therefore the plane KBOS does not meet the lesser sphere.

And that the other planes between the quadrants BX, KX fall without the lesser sphere, is thus demonstrated: From the point A draw AI perpendicular to the plane of the quadrilateral SOPT, and join IO; and, as was demonstrated of the plane KBOS and the point Z, in the same way it may be shewn that the point I is the centre of a circle described about SOPT: and that OS is greater than PT; and PT was shewn to be parallel to OS : Therefore because the two trapeziums KBOS, SOPT inscribed in circles have their sides BK, OS parallel, as also OS, PT; and their other sides $\mathrm{BO}, \mathrm{KS}, \mathrm{OP}, \mathrm{ST}$, all equal to one another, and that BK is greater than OS, and OS greater than PT, therefore the straight line ZB is greater ${ }^{2}$ than IO. Join $A O$ which will be equal to $A B$; and because $\mathrm{AlO}, \mathrm{AZB}$ are right angles, the squares of $\mathrm{AI}, 10$ are equal to the square of $A O$ or of $A B$; that is, to the squares of $A Z$, $Z B$; and the square of $Z B$ is greater than the square of $I O$, therefore the square of $A Z$ is less than the square of $A I$; and the straight line $A Z$ less than the straight line AI: And it was proved, that $A Z$ is greater than $A G$; much more then is AI greater than AG: Therefore the plane SOPT falls wholly without the lesser sphere : In the same manner it may be demonstrated, that the plane TPRY falls without the same sphere ${ }_{3}$ as also the triangle YRX, viz. by the Cor. of 2d Lemma. And after the same way it may be demonstrated, that all the planes which contain the solid polyhedroin, fall without the lesser sphere. Therefore in the greater of two spheres, which have the same centre, a solid polyhedron is described, the superfices of which does not meet the lesser sphere. Which was to be done.

But the straight line AZ may be demonstrated to be greater than AG otherwise, and in a shorter manner, without the help of Prop. 16, as follows. From the point G draw $G U$ at right angles to $A G$, and join $A U$. If then the circumferences $B E$ be bisected, and its half again bişected, and so on, there will at

OF EUCLID.

length be left a circumferenceless than the circumference which Dex XII. is subtended by a straight line equal to GU, inscribed in the circie BCDE: Let this be the circumference KB: Therefore the straight line $K B$ is less than $G U$: And because the angle BZK is obtuse, as was proved in the preceding, therefore BK is greater than BZ : But GU is greater than BK ; much more then is $G U$ greater than $B Z$, and the square of $G U$ than the square of $B Z$; and $A U$ is equal to $A B$; therefore the square of $A U$, that is, the squares of $A G, G U$, are equal to the square of $A B$, that is, to the squares of $A Z, Z B$; but the square of $B Z$ is less than the square of $G U$; therefore the square of $A Z$ is greater than the square of $A G$, and the straight line $A Z$ consequently greater than the straight line AG.

COR. And if in the lesser sphere there be described a solid polyhedron, by drawing straight lines betwixt the points in which the straight lines from the centre of the sphere drawn to all the angles of the solid polyhedron in the greater sphere meet the superficies of the lesser; in the same order in which are joined the points in which the same lines from the centre meet the superficies of the greater sphere; the solid polyhedron in the sphere BCDE has to this other solid polyhedron the triplicate ratio of that which the diameter of the sphere BCDE has to the diameter of the other sphere: For if these two solids be divided into the sàme number of pyramids, and in the same order, the pyramids shall be similar to one another, each to each: Because they have the solid angles at their common vertex, the centre of the sphere, the same in each pyramid, and their other solid angle at the bases equal to one another, each to each ${ }^{2}$, because they are contained by three B.11. plane angles, each equal to each; and the pyramids are contained by the same number of similar planes; and are therefore similar ${ }^{5}$ 111. def.11. to one another, each to each: But similar pyramids have to one another the triplicate ${ }^{\text {c⿻ }}$ ratio of their homologous sides. ${ }^{\text {e }}$ Cor. 8.12. Therefore the pyramid of which the base is the quadrilateral KBOS, and vertex A, has to the pyramid in the other sphere of the same order, the triplicate ratio of their homologous sides, that is, of that ratio which $A B$ from the centre of the greater sphere has to the straight line from the same centre to the superficies of the lesser sphere. And in like manner, each pyramid in the greater sphere has to each of the same order in the lesser, the triplicate ratio of that which $A B$ has to the semidiameter of the lesser sphere. And as one antecedent is to its consequent, so are all the antecedents to all the consequents. Wherefore the whole solid polyhedron in the greater sphere bas to the whole solid polyhedron in the other, the triglicate ratio

THE ELEMENTS

Book X11. of that which $A B$ the semidiameter of the first has to he midiameter of the other; that is, which the diameter B of the greater has to the diameter of the other sphere.

PROP. XVIII. THEOR.

SPHERES have to one another the triplicate ratio of that which their diameters have.

Let $\mathrm{ABC}, \mathrm{DEF}$ be two spheres, of which the diameters are BC, EF. The sphere ABC has to the sphere DEF the triplicate ratio of that which BC has to EF .

For, if it has not, the sphere ABC shall have to a sphere either less or greater, than DEF, the triplicate ratio of that which BC has to EF. First, let it have that ratio to a less, viz. to the sphere GHK ; and let the sphere DEF have the same centre with GHK ; and in the greater sphere DEF describe ${ }^{2}$

a solid polyhedron, the superficies of which does not meet the lesser sphere GHK ; and in the sphere ABC describe another similar to that in the sphere DEF: Therefore the solid polyhedron in the sphere ABC has to the solid polyhedron in the sphere DEF, the triplicate ratio ${ }^{\text {b }}$ of that which $B C$ has to EF. But the sphere ABC has to the sphere GHK, the triplicate ratio of that which $B C$ has to $E F$; therefore as the sphere $A B C$ to the sphere GHK, so is the said polyhedron in the sphere $A B C$ to the solid polyhedron in the sphere DEF : But the sphere
614.5. ABC is greater than the solid polyhedron in it ; therefore also the sphere GHK is greater than the solid polyhedron in the sphere DEF: But it is also less, because it is contained within $i t$, which is impossible : Thercfore the sphere $A B C$ has not to

OFEUCLID.

any sphere less than DEF, the triplicate ratio of that which Boox XII. BC has to EF . In the same manner, it may be demonstrated, that the sphere DEF has not to any sphere less than ABC , the triplicate ratio of that which EF has to BC. Nor can the sphere ABC have to any sphere greater than DEF, the triplicate ratio of that which BC has to EF : For, if it can, let it have that ratio to a greater sphere LMN : Therefore, by inversion, the sphere LMN has to the sphere ABC, the triplicate ratio of that which the diameter EF has to the diameter BC. But as the sphere LMN to ABC, so is the sphere DEF to some sphere, which must be lessc than the sphere ABC , because the sphere LMN is greater than the sphere DEF : therefore the sphere DEF has to a sphere less than ABC the triplicate ratio of that which EF has to BC ; which was shewn to be impossible: Therefore the sphere ABC has not to any sphere greater than DEF the triplicate ratio of that which BC has to EF : and it was demonstrated, that neither has it that ratio to any sphere less than DEF. Therefore the sphere ABC has to the sphere DEF, the triplicate ratio of that which BC has to EF. Q. E. D.

N O TES,

CRITICAL AND GEOMETRICAL;

CONTAINING

An Account of those Things in which this Edition differs from the Greek Text; and the Reasons of the Alterations which have been made. As also Observations on some of the Propositions.

By ROBERT SIMSON, M.D.

Emeritus Professor of Mathematics in the University of Glasgow.
LONDON:

Printed for F. Wingrave, in the Strand, Successor to Mr. Nourse.
\square
(an

NO TE S, \&c.

DEFINITION I. BOOK I.

IT is necessary to consider a solid, that is, a magnitude which has length, breadth, and thickness, in order to understand aright the definitions of a point, line, and superfices; for these all arise from a solid, and exist in it: The boundary, or boundaries which contain a solid are called superficies, or the boundary which is common to two solids which are contiguous, or which divides one solid into two contiguous parts, is called a superficies: Thus, if BCGF be one of the boundaries which contain the solid ABCDEFGH, or which is the common boundary of this solid, and the solid BKLCFNMG, and is therefore in the one as well as in the other solid, is called a superficies, and has no thickness: For, if it have any, this thickness must either be a part of the thickness of the solid AG, or of the solid BM, or a part of the thickness of each of them. It cannot be a part of the thickness of the solid BM ; because if this solid be removed from the solid AG, the superficies BCGF, the boundary of the solid $A G$, remain still the
 same as it was. Nor can it be a part of the thickness of the solid AG; because if this be removed from the solid BM, the superficies BCGF, the boundary of the solid BM does nevertheless remain, therefore the superfines BCGF has no thickness, but only length and breadth.

The boundary of a superficies is called a line, or a line is the common boundary of two superficies that are contiguous, or which divides one superficies into two contiguous parts: Thus if BC be one of the boundaries which contain the superficies $A B C D$, or which is the common boundary of this superficies, and of the superficies KBCL which is contiguous to it, this boundary BC is called a line, and has no breadth: For if it have any, this must be part either of the breadth of the superficies ABCD, or of the superfices KBCL, or part of each of them. It is not part of the breadth of the superfices KBCL; for, if this superfices be removed from the superfices $A B C D$,

Boor I. the line $B C$, which is the boundary of the superfices $A B C D$, remains the same as it was: Nor can the breadth that $B C$ is supposed to have, be a part of the breadth of the superficies ABCD ; because, if this be removed from the superficies KBCL, the line BC, which is the boundary of the superficies KBCL , dees nevertheless renain: Therefore the line BC has no breadth: And because the line BC is in a superficies, and that a superficies has no thickness, as was shewn, therefore a line has neither breadth nor thickness, but only length.

The boundary of a line is called a point, or a point is the common boundary or extremity of two lines that are contiguous: Thus,' if B be the extremity of the line $A B$, or the cominols extremity of the two lines $\Lambda B, K B$, this extremity is called a point, and has no length: For if it have any, this length must either be part of the length of the line $A B$,
 or of the line KB. It is not part of the length of $K B$; for if the line $K B$ be removed from $A B$, the point B which is the extremity of the line $A B$ remains the same as it was: Nor is it part of the length of the line $A B$; for, If $A B$ be removed from the line $K B$, the point B, which is the extremity of the line KB, does nevertheless remain: Therefore the point B has no length: And because a point is in a line, and a line has neither breadth nor thickness, therefore a point has no length, breadth, nor thickness. And in this manner the definitions of a point, line, and superficies, are to be understood.

DEF. VII. B. I.

Instead of this definition as it is in the Greek copies, a more distinct one is given from a property of a plane superficies, which is manifestly supposed in the Elements, viz. that a staight line drawn from any point in a plane to any other in it, is wholly in that plane.

> DEF. VIII. B. I.

It seems that be who made this definition designed that it should comprehend not only a plane angle contained by two straight lines, but likewise the angle which some conceive to be made by a straight line and a curve, or by two curve lines which meet one another in a plane: But, though the meaning of
NO T, ES.
the words $\varepsilon \pi^{\prime}$ Evil etas, that is, in a straight line, or in the same direction, be plain, when two straight lines are said to be in a straight line, it does not appear what ought to be understood by these words, when a straight line and a curve, or two curve lines, are said to be in the same direction; at least it cannot be explained in this place; which makes it probable that this definition, and that of the angle of a segment, and what is said of the angle of a semicircle, and the angles of segments, in the 16th and 3 Inst Propositions of Book 3, are the additions of some less skilful editor: On which account, especially since they are quite useless, these definitions are distinguished from the rest by inverted double commas.
DEF. XVII. B. I.

The words, " which also divides the circle into two equal "parts" are added at the end of this definition in all the copies, but are now $l=f t$ out as not belonging to the definition, being only a corollary from it. Proclus demonstrates it by conceiving one of the parts into which the diameter divides the circle, to be applied to the other; for it is plain they must coincide, else the straight lines from the centre- to the circumference would not be all equal: The same thing is easily deduced from the 3 rat Prop. of Book 3, and the 24th of the same; from the first of which it follows, that semicircles are similar segments of a circle; and from the other, that they are equal to one another.

DEF. XXXIII. B. I.

This definition has one condition more than is necessary; because every quadrilateral figure which has its opposite sides equal to one another, has likewise its opposite angles equal; and on the contrary.

Let $A B C D$ be a quadrilateral figure, of which the opposite sides $A B, C D$, are equal to one anothen ; as also AD and BC : Join BD ; the two sides $A D, D B$ are equal to the two CB, BD, and the base AB is equal to the base CD ; therefore, by Prop. 8. of Book 1. the angle ADB is
 equal to the angle CBD; and, by Prop. 4. B. I. the angle BAD is equal to the angle DCB , and ABD to BDC ; and therefore also the angle $A D C$ is equal to the angle $A B C$.

Book I.四

And if the angle BAD be equal to the opposite angle BCD , and the angle $A B C$ to $A D C$; the opposite sides are equal: Because, by Prop. 32. B. 1. all the angles of the quadrilateral figure $A B C D$ are together equal to four right angles, and the two angles $B A D, A D C$ are together equal to the two angles $\mathrm{BCD}, \mathrm{ABC}$: Wherefore $B A D, A D C$ are the half of all the four angles; that is, BAD and
 $A D C$ are equal to two right angles: and therefore $A P, C D$ are parallels by Prop. 28. B. I. In the same manner, AD, BC are parallels: Therefore $A B C D$ is a parallelogram, and its opposite sides are equal, by $34^{\text {th }}$ Prop. B. 1.

PROP. VII. B. I.

There are two cases of this proposition, one of which is not in the Greek text, but is as necessary as the other: And that the case left out has been formerly in the text, appears plainly from this, that the second part of Prop. 5. which is necessary to the demonstration of this case, can be of no use at all in the Elements, or any where else, but in this demonstraton; because the second part of Prop. 5. clearly follows from the first part, and Prop. 13. B. 1. This part must therefore have been added to Prop. 5. upon account of some proposition betwixt the 5th and 13 th, but none of these stand in need of it except the 7 th Proposition, on account of which it has been added: Besides, the translation from the Arabic has this case explicitly demonstrated. And Proclus acknowledges, that the second Part of Prop. 5. was added upon account of Prop. 7. but gives a ridiculous reason for it, "that it might afford an "answer to objections made against the 7 th," as if the case of the 7 th, which is left out, were, as he expressly makes it, an objection against the proposition itself. Whoever is curious may read what Proclus says of this in his commentary on the 5 th and 7 th Propositions; for it is not worth while to relate his trifles at full length.

It was thought proper to change the enunciation of this 7 th Prop. so as to preserve the very same meaning; the literal translation from the Greek being extremely harsh, and diffcult to be understood by beginners.

PROP. XI. B. I.

A corollary is added to this proposition, which is necessary to Prop. I. B. II. and otherwise.

PROP. XX. and XXI. B. I.

Proclus, in his commentary, relates, that the Epicureans derided this proposition, as being manifest even to asses, and needing no demonstration; and his answer is, that though the truth of it be manifest to our senses, yet it is science which must give the reason why two sides of a triangle are greater than the third: But the right answer to this objection against this and the 215 , and some other plain propositions, is, that the number of axioms ought not to be increased without necessity, as it must be if these propositions be not demonstrated. Mons. Clairault, in the Preface to his Elements of Geometry, published in French at Paris, anno 1741, says, That Euclid has been at the pains to, prove, that the two sides of a triangle which is included within another, are together less than the two sides of the triangle which includes it ; but he has forgot to add this condition, viz. that the triangles must be upon the same base; because, unless this be added, the sides of the included triangle may be greater than the sides of the triangle which includes it, in any ratio which is less than that of two to one, as Pappus Alexandrinus has demonstrated in Prop. 3. B. 3. of his mathematical colledions.

PROP. XXII. B. I.

Some authors blame Euclid because he does not demonstrate that the two circles made use of in the construction of this problem must cut one another: But this is very plain from the determination he has given, viz. that any two of the straight lines $D F, F G, G H$ must be greater than the third: For who is so dull, though only beginning to learn the Elements, as not to perceive that the circle describ. ed from the centre F, at the distance FD , must meet FH
 betwixt F and H , because FD
is less than FH; and that, for the like reason, the circle described from the centre G , at the distance GH or GM , must

NOTES.

meet $D G$ betwixt D and G; and that these circles must meet one another, because FD and
GH are together greater than FG? And this determination is easier to be understood than that which Mr. Thomas Simpson derives from it, and puts instead of Euclid's, in the 49th page of
 his Elements of Geometry, that he may supply the omission he blames Euclid for, which determination is, that any of the three straight lines must be less than the sum, but greater than the difference of the other two: From this he shews the circles must meet one another, in one case; and says, that it may be proved after the same manner in any other case: But the straight line GM, which he bids take from GF may be greater than it, as in the figure here annexed; in which case his demonstration must be changed into another.

PROP. XXIV. B. I.

To this is added, "of the two sides DE, DF, let DE be "that which is not greater than the other;" that is, take that side of the two DE, DF which is not greater than the other, in order to make with it the angle EDG equal to BAC ; because without this restriction there might be three different cases of the proposition, as Campanus and others make.

Mr. Thomas Simpson, in p. 262 of the second edition of his Elements of Geometry, printed anno 1760, observes in his notes, that it ought to have been shewn, that the points F fall below the line EG. This proba-
 bly Euclid omitted, as it is very easy to perceive, that $D G$ being equal to DF, the point G is in the circumference of a circle described from the centre D at the distance DF , and must be in that part of it which is above the straight line EF, because DG falls above DF, the angle EDG being greater than the angle EDF.

PROP. XXIX. B. I.

The proposition which is usually called the 5th postulate, or IIth axiom, by some the 12 th, on which this 29 th depends, has
NOTES.
given a great deal to do, both to ancient and modern geometers: It seems not to be properly placed among the axioms, as indeed it is not self-evident ; but it may be demonstrated thus:

DEFINITION I.

The distance of a point from a straight line, is the perpendicular drawn to it from the point.

DEF. 2.

One straight line is said to go nearer to, or further from, another straight line, when the distances of the points of the first from the other straight line become less or greater than they were; and two straight lines are said to keep the same distance from one another, when the distance of the points of one of them from the other is always the same.

AXIOM.

A straight line cannot first come nearer to another straight line, and then go further from it, before it cuts it; and, in like manner, a straight line cannot go further from another straight line, and then come nearer to it; nor can a straight line keep
 the same distance from another straight line, and then come rearer to it, or go further from it; for a straight line keeps always the same direction.

For example, the straight line $A B C$ cannot first come nearer to the straight line $D E$, as from the point A to the point B, and then, from the point B to the point C, go further from the same DE: And, in like manner, the straight line FGH
 above figure. cannot go further from DE, as from F to G , and then, from G to H , come nearer to the same DE : And so in the last case, as in fig. 2.

PROP. I.

If two equal straight lines $A C, B D$, be each at right angles to the same straight line $A B$: If the points C, D be joined by the straight line $C D$, the straight line EF drawn from any point E in $A B$ unto $C D$, at right angles to $A B$; shall be equal to AC , or BD .

If EF be not equal to AC , one of them must be greater than the other; let AC be the greater; then, because FE is

Book I. less than CA, the straight line CFD is nearer to the straight line $A B$ at the point F than at the point C, that is, $C F$ comes nearer to AB from the point C to F : But because DB is greater than FE, the straight line CFD is further from $A B$ at the point D than at F, that is, $F D$ goes further from $A B$ from F to ${ }^{-} \mathrm{D}$: Therefore the
 straight line CFD first comes nearer to the straight line $A B$, and then goes further from it, before it cuts it ; which is impossible. If FE be said to be greater than CA , or DB , the straight line CFD first goes further from the straight line $A B$, and then comes nearer to it: which is also impossible. Therefore FE is not unequal to AC , that is, it is equal to it.

PROP. II.

If two equal straight lines AC, BD be each at right angles to the same straight line $A B$; the straight line $C D$ which joins their extremities makes right angles with $A C$ and $B D$.

Join AD, BC; and because, in the triangles $\mathrm{CAB}, \mathrm{DBA}$, $C A, A B$ are equal to $D B, B A$, and the angle $C A B$ equal to the angle DBA ; the base BC is equala to the base AD : And in the triangles $\mathrm{ACD}, \mathrm{BDC}, \mathrm{AC}, \mathrm{CD}$ are equal to BD, DC, and the base $A D$ is equal to the base $B C$: Therefore the angle $A C D$ is equal ${ }^{\text {b }}$ to the angle BDC ! From any point E in AB draw EF unto $C D$, at right angles to $A B$; therefore, by Prop. I. EF is equal to AC, or BD ; wherefore, as has been just
 now shewn, the angle, ACF is equal to the angle EFC: In the same manner, the angle BDF is equal to the angle EFD; but the angles $A C D, B D C$ are equal;
510. def. 1. therefore the angles EFC and EFD are equal, and right angles; wherefore also the angles $\mathrm{ACD}, \mathrm{BDC}$ are right angles.
'Cor. Hence, if two straight lines $A B, C D$ be at right angles to the same straight line $A C$, and if betwixt them a straight line BD be drawn at right angles to either of them, as , to $A B$; then $B D$ is equal to $A C$, and $B D C$ is a right angle.

If $A C$ be not equal to $B D$, take $B G$ equal to $A C$, and join CG: Therefore, by this proposition, the angle ACG is a right angle; but ACD is also a right angle ; wherefore the angles

NOTES.

$\mathrm{ACD}, \mathrm{ACG}$ are equal to one another, which is impossible. Therefore $B D$ is equal to $A C$; and by this proposition $B D C$ is a right angle.

PROP. 3.

If two straight lines which contain an angle be produced, there may be found in either of them a point from which the perpendicular drawn to the other shall be greater than any given straight line.

Let $A B, A C$ be two straight lines which make an angle with one another, and let $A D$ be the given straight line; a point may be found either in AB or AC , as in $A C$, from which the perpendicular drawn to the other AB shall be greater than AD .

In AC take any point E, and draw EF perpendicular to $A B$; produce $A E$ to G, so that $E G$ be equal to $A E$; and produce $F E$ to H, and make $E H$ equal to $F E$, and join $H G$. Because, in the triangles AEF, GEH, AE, EF are equal to GE, EH, each to each, and contain equal ${ }^{2}$ angles, the angle $=15$. 1 . GHE is therefore equal ${ }^{b}$ to the angle AFE which is a right ${ }^{4}$. 1 . angle: Draw GKperpendicular to AB; and because the straight lines FK, HG are at right angles to FH , and KG at right angles to FK, KG is equal to FH , by Cor. Pr. 2. that is, to the
 double of FE.
In, the same manner if AG be produced to L, so that $G L$ be equal to $A G$, and LM be drawn perpendicular to $A B$, then LM is double of GK, and so on. In AD take AN equal to $F E$, and $A O$, equal to $K G$, that is, to the double of $F E$, or AN; also, take AP, equal to LM, that is, to the double of $K G$, or $A O$; and let this be done till the straight line taken be greater than $A D:$ Let this straight line so taken be AP, and because AP is equal to LM, therefore LM is greater than AD. Which was to be done.

PROP. 4.

If two straight lines $A B, C D$ make equal angles $E A B$, ECD with another straight line EAC towards the saine parts of it; $A B$ and $C D$ are at right angles to some straight line.

BookI.
Bisect $A C$ in F, and draw $F G$ perpendicular to $A B$; take CH in the straight line CD equal to AG , and on the contrary side of AC to that on which AG is, and join FH: Therefore, in the triangles AFG, CFH, the sides FA, AG are equal to FC, CH, each to each, and the angle
15.1. FAG, that ${ }^{2}$ is $E A B$, is equal to the
©4. I. angle FCH; wherefore ${ }^{\text {b }}$ the angle AGF is equal to CHF, and $A F G$ to the angle CFH: To these last add the common angle AFH; therefore the two angles $\mathrm{AFG}, \mathrm{AFH}$ are equal. to the two angles CFH, HFA, which two last are equal together to

- is. 1. two right angles ${ }^{\text {c }}$: therefore also

-15.1. AFG, AFH are equal to two right angles, and consequently GF and FH are in one straight line. And because AGF is a right angle, CHF which is equal to it is also a right angle : Therefore the straight lines AB, CD are at right angles to CH .

PROP. 5 .

If two straight lines $B B, C D$ be cut by a third $A C E$, so as to make the interior angles $\mathrm{BAC}, \mathrm{ACD}$, on the same side of it, together less than two right angles; $A B$ and $C D$ being produced, shall meet one another towards the parts on which are the two angles, which are less than two right angles.

At the point C , in the straight line CE , make ${ }^{3}$ the angle ECF equal to the angle $E A B$, and draw to $A B$ the straight line CGat right angles to CF : Then, because the angles ECF , EABare equal to one another, and that the angles ECF, FCA are together
-13. 1. equal ${ }^{\text {b }}$ to two right an- gles, the angles EAB, FCA are equal to two right angles. But by the hypothesis, the angles EAB, ACD are together less than two right
 angles; therefore the angle FCA is greater than $A C D$, and $C D$ falls between $C F$ and AB : And because CF and CD make an angle with one another, by Prop. 3. a point may be found in either of them CD , from which the perpendicular drawn to CF. shall be greate ${ }_{r}$
NOTES.
than the sfraight line CG. Let this point be H , and draw HK perpendicular to CF , meeting AB in L : And because $A B, C F$ contain equal angles with $A C$ on the same side of it, by Prop. 4. AB and CF are at right angles to the straight line MNO, which bisects $A C$ in N, and is perpendicular to $C F$: Therefore by Cor. Prop. 2. CG and KL, which are at right angles to CF , are equal to one another: And HK is greater than CG, and therefore is greater than KL, and consequently the point H is in KL produced. Wherefore the straight line CDH , drawn betwixt the points C, H, which are on contrary sides of AL, must necessarily cut the straight line AB.

PROP. XXXV. B. I.

The demonstration of this Proposition is changed', because, if the method which is used in it was followed, there would be three cases to be separately demonstrated, as is done in the translation from the Arabic; for, in the Elements, no case of a Proposition that requires a different demonstration ought to be omitted. On this account, we have chosen the method which Mors. Clairault has given, the first of any, as far as I know, in his Elements, page 21, and which afterwards Mr. Simpson gives in his page 32. But whereas Mr. Simpson makes use of Prop. 26. B. I. from which the equality of the two triangles does not immediately follow, because, to prove that, the $4^{\text {th }}$ of B. 1. must likewise bermade use of, as may be seen in the very same case in the $34^{\text {th }}$ Prop. B. I. it was thought better to make use only of the $4^{\text {th }}$ of B. I.
PROP. XLV. B.I.

The straight line KM is proved to be parallel to FL, from the 33^{-}Prop. whereas KH is parallel to FG by contruction, and KHM, FGL have been demonstrated to be straight lines. A corollary is added from Commandine, as being often used.

PROP. XIII, B. II.

IN this proposition only acute angled triangles are men- Boor IL tioned, whereasit holds true of every triangle : and the demonstrations of the cases omitted are added; Commandine and Cla vius have likewise given their demonstrations of these cases.

> PROP. XIV. B. II.

In the demonstration of this, some Greek editor has ignorantly inserted the words, "but if not, one of the two BE, "ED,

Book 11. " ED , is the greater: Let BE be the greater; and produce it to " F ," as if it was of any consequence whether the greater or lesser be produced: Therefore, instead of these words, there ought to be read only, "but-if not, produce BE to F."

PROP. I. B'. III.

$\underbrace{\text { Boox III. SEVERAL authors, especially among the modern mathe- }}$ maticians and logicians, inveigh too severely against indirect or apogogic demonstrations, and sometimes ignorantly enough; not being aware that there are some things that cannot be demonstrated any other way: Of this the present proposition is a very clear instance, as no direct demonstration can be given of it: Because,' besides the definition of a circle, there is no principle or property relating to a circle antecedent to this problem, from which either a direct or indirect demonstration can be deduced: Wherefore it is necessary that the point found by the construction of the problem be proved to be the centre of the circle, by the help of this definition, and some of the preceding propositions: And because, in the demonstration, this proposition must be brought in, viz. straight lines from the centre of a circle to the circumference are equal, and that the point found by the construction cannot be assumed as the centre, for this is the thing to be demonstrated: it is manifest some other point must be assumed as the centre : and if from this assumption an absurdity follows, as Euclid demonstrates there must, then it is not true that the point assumed is the centre; and as any point whatever was assumed, it follows that no point, except that found by the construction, can be the centre, from which the necessity of an indirect demonstration in this case is evident.

PROP. XIII. B.III.

As it is much easier to imagine that two circles may touch one another within in more points than one, upon the same side, than upon opposite sides; the figure of that case ought not to have been omitted ; but the construction in the Greek text would not have suited with this figure so well, because the centres of the circles must have been placed near to the circumferences; on which account another construction and demonstration is given, which is the same with the second part of that which Campanus has translated from the Arabic, where,

Where, without any reason, the demonstration is divided into Boor III. two parts.

> PROP. XV. B. III.

The converse of the second part of this proposition is wanting, though in the preceding, the converse is added, in a like case, both in the enuriciation and demonstration; and it is now added in this. Besides, in the demonstration of the first part of this 15 th, the diameter AD (sce Commandine's figure), is proved to be greater than the straight line $B C$ by means of another straight line MN ; whereas it may be better done without it: on which accounts we have given a different demonstration, like to that which Euclid gives in the preceding 14th, and to that which Theodosius gives in Prop. 6. B. I. of his Spherics, in this very affair.

PROP. XVI. B. III.

In this we have not followed the Greek nor the Latin transJation literally, bu: have given what is plainiy the meaning of the proposition, without mentioning the angle of the semicircle, or that which some call the cornicular angle, which they conceive to be made by the circumference and the straight line which is at right angles to the diameter, at its extremity; which angles have furnished matter of great debate between sume of the modern geomerrers, and given occasion of deducing strange consequences from them, which are quite avoided by the manner in which we have expressed the proposition. And in like manner, we have given the true meaning of prop. 3 I . B. 3. without mentioning the angles of the greater or lesser segments. These passages Vieta, with good reason, suspeets to be adulterated in the 385 th page of his Oper. Math. .

> PROP. XX. B. III.

The first words of the second part of this demonstration,
 Dr. Gregory, "Rursus inclinetur;" for the translation ought to be "Rursus infectatur," as Commandine has it : A straight line is said to be inflected either to a straight, or curve line, when a straight line is drawn to this line from a point, and from the point in which it meets it, a straight line making an angle with the former is drawn to another point, as is evident from the goth prop: of Euclid's Data: For thus the whole line betwixt the first and last points is inflected or broken at

Book IIl, the point of inflection, where the two straight lines meet. And in the like sense two straight lines are said to be inflected from two points to a third point, when they make an angle at this point; as may be seen in the description given by Pappus Alexandrinus of Appollonius's Books de Locis planis, in the preface to his η th Book: We have made the expression fuller from the goth Prop. of the Data.

> PROP. XXI. B. III.

There are two cases of this proposition, the second of which, viz, when the angles are in a segment not greater than a semicircle, is wanting in the Greek: And of this a more simple demonstration is given than that which is in Commandine, as being derived only from the first case, without the hclp of triangles.

PROP. XXIII, and XXIV. B. III.

In proposition 24. it is demonstrated that the segment AEB must coincide with the segment CFD (see Commandine's figure,) and that it cannot fail otherwise, as CGD, so as to cut the other circle in a third point G, from this, that, if it did, a circle could cut another in more points than two: But this ought to have been proved to be impossible in the 23 d prop. as well as that one of the segments cannot fall within the other. This, part, then', is left out in the 24 th, and put in its proper place, the 23 rd proposition.

PROP. XXV. B. III.

This proposition is divided into three cases, of which two have the same construction and demonstration; therefore it is now divided only into two cases.

PROP. XXXIII. B. III.

This also in the Greek is divided into three cases, of which, two, viz. one, in which the given angle is acute, and the other in which it is obtuse, have exactly the same construction and demonstration: on which account, the demonstration of the last case is left out, as quite superfluous, and the addition of some unskilful editor; besides the demonstration of the case when the angle given is a right angle, is done a round+about way, and is therefore changed to a more simple one, as was done by Clavius.

NOTES.

PROP. XXXV. B. 111 .

As the $25^{\text {th }}$ and $33^{\text {rid }}$ propositions are divided into more cases, so this 35 th is divided into fewer cases than are necessary. Nor can it be supposed that Euclid omitted them because they are easy; as he has given the caee, which by far is the easiest of them all, viz. that in which both the straight lines pass through the centre: And in the following proposition he separately demonstrates the case in which the straight line passes through the centre, and that in which it does not pass through the centre: So that it seems Theon, or some other, has thought them too long to insert: But cases that require different demonstrations, should not be leftout in the Elements, as was before taken notice of: These cases are in the translation from the Arabie, and are now put into the text.

PROP. XXXVII. B. III.

At the end of this, the words " in the same manner it may" "s be demonstrated, if the centre be in AC," are left out as the addition of some ignorant editor.

DEFINITIONS of BOOK IV.

WHEN a point is in a straight line, or any other line, this Boor I, point is by the Greek geometers said ${ }^{2} \pi=\varepsilon \sigma \sim \alpha t$, to be upon, or in that line, and when a straight line or circle meets a circle any way, the one is said "̈шTeaisa to meet the other: But when a straight line or circie meets a circle so as not to cut it, it is said $\varepsilon \uparrow x \varpi \tau \varepsilon \sigma i x \leq$, to touch the circle ; and these two terms are never promiscuously used by them: Therefore, in the 5th
 of the simple éminta: And' in the 1st, 2d, 3 d, and 6th definitions in Commandine's translation, "t tangit," must be read instead of "contingit :" And in the 2 d and 3 d definitions of Book 3. the same change must be made: But in the Greek text of propositions 1 Ith, 12 th, 13 th, 18 th, 19th, Book 3 . the compound verb is to be put for the simple.

> PROP. IV. B. IV.

In this, as also in the 8th and I3th proposition of this book, it is demonstrated indirectly, that the circle touches a straight line; whereas in the 17th, 33 d , and 37 th propositions of Book 3. the same thing is directly demonstrated: And this way we have

Book IV. have chosen to use in the propositions of this book, as it is shorter.

PROP. V. B. IV:

The demonstration of this has been spoiled by some unskilful hand: For he does not demonstrate, as is necessary, that the two straight lines which bisects the sides of the triangle at right angles must meet one another; and, without any reason, the divides the proposition into three cases; whereas, one and the same construction and demonstration serves for them all, as Campanus has observed ; which useless repetitions are now left out: The Greek text also in the corollary is manifestly vitiated, where mention is made of a given angle, though there neither is, nor can be, any thing in the proposition relating to a given angle.

> PROP. XV. and XVI. B. IV.

In the corollary of the first of these, the words equilateral and equiangular are wanting in the Greek: and in prop. 16. instead of the circle $A B C D$, ought to be read the circumference $A B C D$: Where mention is made of its containing fifteen equal parts.

DEF. III. B. V.

Boon V. DANY of the modern mathematicians reject this definition : The very learned Dr. Barrow has explained it at large at the end of his third lecture of the year 1666, in which also he answers the objections made against it as well as the subject would allow: And at the end gives his opinion upon the whole, as follows;
"I s'all only add, that the author had, perhaps, no other "design in making this definition; than (that he might more " fully explain and embellish his subject) to give a general "، and sumunary idea of ratio to begiuners, by premising " this metaphysical definition, to the more accurate 'defini" tions of ratios that are the same to one another, or one of " which is greater, or less than the other: I call it a meta" physical, for it is not properly' a mathematical, definition, "s since nothing in mathematics depends on it, or is deduced, " "nor, as I judge, can be deduced from it: And the defini" tion of analogy, which follows, viz. Analogy is the simi-
" litude of ratios; is of the same kind, and can serve for no "purpose in mathematics, but only to give beginners some ge" neral, though gross and confused, notion of analogy: But the " whole of the doctrine of ratios, and the whole of mathema" tics, depend upon the accurate mathematical definitions which "follow this: To these we ought principally to attend, as the "doctrine of ratios is more perfectly explained by them; this "third, and others like it, may be entirely spared without any " loss to geometry'; as we see in the 7 th book of the Elements, "where the proportion of numbers to one another is defined, " and treaied of, yet without giving any definition of the ratio " of numbers; though such a definition was as necessary and "useful to be given in that book as in this: But indeed there " is scarce any need of it in either of them: Though I think " that a thing of so general and abstracted a nature, and there"by the more difficult to be conceived and explained, cannot " be more commodiously defined than as the author has done: " Upon which account I thought fit to explain it at large, and "defend it against the captious objections of those who attack "it." To this citation from Dr. Barrow I have nothing to add, except that I fully believe the 3 d and 8 th definitions are not Euclid's, but added by some unskilful editor.

> DEF. XI. B. V.

It was necessary to add the word "continual" before "proportionals" in this definition; and thus it is cited in the 33d prop. of Book II.

After this definition ought to have followed the definition of compound ratio, as this was the proper place for it; duplicate and triplicate ratio being species of compound ratio: But Theon has made it the 5 th det. of B. 6. where he gives an absurd and entirely useless definition of compound ratio: For this reason we have placed another definition of it betwixt the 1Ith and 12th of this book, which, no doubt, Euclid gave; for he cites it expressly in Prop. 23. B. 6, and which Clavius, Herigon, and Barrow, have likewise given, but they retain also Theon's, which they ought to have left out of the Elements.

> DEF. XIII. B. V.

This, and the rest of the definitions following, contain the explication of some terms which are used in the 5th and following books; which, except a few, are easily enough under
stood from the propositions of this book where they are first mentioned: They seem to have been added by Theon, or some other. However it be, they are explained something more distinctly for the sake of learners.

PROP. IV. B. V.

In the construction preceding the demonstration of this, the words $\dot{\propto} \varepsilon \tau \cup \chi \varepsilon$, any whatever, are twice wanting in the Greek, as also in the Latin translations ; and are now added, as being wholly necessary.

Ibid, in the demonstration; in the Greek, and in the Latin translation of Commandine, and in that of Mr. Henry Briggs, which was published at London in 1620, together with the Greek text of the first six books, which translation in this place is foilowed by Dr. Gregory in his edition of Euclid, there is this sentence following, viz. " and of A and C have been taken "equimúltiples K, L; and of B and D, any equimultiples " whatever ($\dot{\alpha} \varepsilon \tau u \chi \varepsilon) \mathrm{M}, \mathrm{N}$;" which is not true, the words " any whatever," ought to be left out: And it is strange that netther Mr. Briggs, who did right to leave out these words in one place of Prop. 13, of this book, nor Dr. Gregory, who changed them into the word "some" in three places, and left them out in a fourth of that same Prop. 13, did not also leave them out in this place of Prop. 4 , and in the second of the two places where they occur in Prop. 17 of this book, in neither of which they can stand consistent with truth: And in none of all these places, even in those which they corrected in their Latin translation, have they cancelled the words $\dot{\alpha} \in r u \chi \in$ in the Greek text, as they ought to have done.

The same words $\dot{\alpha} \varepsilon \tau u \chi \approx$ are found in four places of Prop. II of this book, in the first and last of which they are necessary, but in the second and third, though they are true, they are quite superfluous; as they likewise are in the second of the two places in which they are found in the 12th Prop. and in the like places of Prop. 22, 23, of this book; but are wanting in the last place of Prop. 23, as also in Prop. 25, Book 11.

> COR. PROP. IV. B. V.

This corollary has been unskilfully annexed to this proposition, and has been made instead of the legitimate demonstration, which, without doubt;' Theon, or some other editor, has taken away, not from this, but from its proper place in
this book: The author of it designed to demonstrate, that if Boor V. four magnitudes $\mathrm{E}, \mathrm{G}, \mathrm{F}, \mathrm{H}$, be proportionals, they are also proportionals inversely; that is, G is to E , as H to F ; which is true; but the demonstration of it does not in the least depend upon this 4 th prop. or its demonstration: For, when he says, " because it is demnonstrated, that if K be greater than M, L is "greater than N, " \&c. This indeed is shewn in the demonstration of the $4^{\text {th }}$ prop. but not from this, that E, G, F; H, are proportionals; for this last is the conclusion of the proposition. Wherefore these words, "because it is demonstrated," \&c. are wholly foreign to his design: And he should have proved, that if K be greater than M, L is greater than N, from this, that $\mathrm{E}, \mathrm{G}, \mathrm{F}, \mathrm{H}$, are proportionals, and from the 5 th def. of this book, which he has not ; but is done in proposition B, which we have given in its proper place, instead of this corollary ; and another corollary is placed after the 4 th prop. which is often of use; and is necessary to the demonstration of Prop. 18 of this book.

PROP. V. B. V.

In the construction which precedes the demonstration of this proposition, it is required that EB may be the same multiple of CG, that $A E$ is of CF ; that is, that EB be divided into as many equal parts, as there are parts in $A E$ equal to CF : From which it is evident, that this construction is not Euclid's, for he does not shew the way of dividing straight lines, and far less other magnitudes, into any number of equal parts, until the 9 th proposition of B. 6. and he never requires any thing to be done in the construction of which he had not before given the method of doing: For this reason, we have changed the construction to one, which, without doubt, is Euclids, in which nothing is required but to add a magnitude to itself a certain number of times; and this is to be fourid in the translation from the Arabic, though the enunciation of the proposition and the demonstration are there very much spoiled. Jacobus Peletarius, who was the first, as far as I know, who took
 notice of this error, gives also the right construction in his edition of Euclid, after he had given the other which he blames: He says, he would not leave it out, because it was fine, and might sharpen one's genius to invent others like it ;

Booz V. whereas there is not the least difference between the two demonstrations, except a single word in the construction, which very probably has been owing to an unskilful librarıan. Clavius likewise gives both the ways; but neither he nor Peletarius takes notice of the reason why the one is preferable to the other.

PROP. VI. B. V.

There are two cases of this proposition, of which only the first and simplest is demonstrated in the Greek: And it is probable Theon thought it was sufficient to give this one, since he was to make use of neither of them in his mutilated edition of the 5 th book; and he might as well have left out the other, as also the fifth proposition, for the same reason. The demonstration of the other case is now added, because both of them, as also the 5 th proposition, are necessary to the demonstration of the 18th proposition of this book. The translation from the Arabic gives both cases briefly.

PROP. A. B. V.

This proposition is frequently used by geometers, and it is necessary in the 25 th prop. of this book, 3 Ist of the 6 th, and $34^{\text {th }}$ of the IIth, and 15 th of the 12th book: It seems to have been taken out of the Elements by Theon, because it appeared evident enough to him, and others, who substitute the confused and indistinct idea the vulgar have of proportionals, in place of that accurate idea which is to be got from the 5 th def. of this book. Nor can there be any doubt that Eudoxus or Euclid gave it a place in the Elements, when we see the 7 th and 9 th of the same book demonstrated, though they are quite as easy and evident as this. Alphonsus Borellus takes occasion from this proposition to censure the 5 th definition of this book very severely, but most unjustly. In p. 126 of his Euclid Restored, printed at Pisa in 1658, he says, "Nor can even this least "degree of knowledge be obtained from the foresaid property," viz. that which is contained in 5 th def. 5. "That, if four " magnitudes be proportionals, the third must necessarily be "greater than the fourth, when the first is greater than the "second: as Clavius acknowledges in the 16th prop. of the " 5 th book of the elements." But though Clavius makes no such acknowledgment expressly, he has given Borellus a handle to say this of him; because when Clavius, in the above cited place, censures Commandine, and that very justly, for demonstrating this proposition by lelp of the 16th of the 5th; yet he himself gives no demonstration of it, but thinks it plain

N O TES.

from the nature of proportionals, as he writes in the end of the Boox. v . 14th and 16th Prop. B. 5. of his edition, and is followed by Herigon in Schol: I. Prop. 4. B. 5, as if there was any nature of proportionals antecedent to that which is to be derived and understood from the definition of them : And indeed, though it is very easy to give a right demonstration of it, nobody, as far as I know, has given one, except the learned Dr. Barrow, who, in answer to Borellus's objection, demonstrates it indirectly, but very briefly and clearly, from the 5 th definition, in the 322 d page of his Lect. Mathem. from which definition it may also be easily demonstrated directly: On which account we have placed it next to the propositions concerning equimultiples.
PROP. B. B. V.

This also is easily deduced from the 5 th def. B. 5, and therefore is placed next to the other; for it was very ignorantly made a corollary from the fourth Prop. of this Book. See the note on that corollary.

> PROP. C. B. V.

This is frequently made use of by geometers, and is necessary to the $5^{\text {th }}$ and 6 th Propositions of the 10 th Book. Clavius, in his notes subjoined to the 8 th def. of Book 5. demonstrates it only in numbers, by help of some of the propositions of the 7 th Book: in order to demonstrate the property contained in the 5 th definition of the 5 th Book, when applied to numbers, from the property of proportionals contained in the 20 th def. of the 7 th Book: And most of the commentators judge it difficult to prove that four magnitudes which are proportionals according to the 20th def. of 7 th Book, are also proportionals according to the 5 th def. of 5 th Book. But this is easily made out as follows:
First, if A, B, C, D, be four magnitudes, súch that A is the same multiple, or the same part of B , which C is of $\mathrm{D}: \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, are proportionals: This is demonstrated in proposition C.
Secondly, if $A B$ contain the same parts of CD that EF does of GH; in this case likewise AB is to CD , as EF to GH.

NOTES.

Book V. Let CK be a part of CD, and GL the same part of GH ; and let AB be the same multiple of CK, that EF is of GL: Therefore, by Prop. C, of 5 th Book, AB is to CK, as EF to GL: And CD, GH are equimultiples, of CK, GL the second and fourth; wherefore, by Cor. Prop. 4. Book 5. AB is to CD , as EF to GH.

And if four magnitudes be proportionals according to the 5 th def. of
 Book 5, they are also proportionals according to the 20th def. of Book 7 .

First, if A be to B , as C to D ; then if A be any multiple or part of B, C is the same multiple or part of D, by Prop. D. of B. 5 .

Next, if $A B$ be to $C D$, as $E F$ to $G H$; then if $A B$ contains any parts of CD, EF contains the same parts of GH : For let CK be a part of CD, and GL the same part of GH , and let AB be a multiple of CK: EF is the same multiple of GL: take M the same multiple of GL that AB is of CK ; therefore, by Prop. C. of B. 5. AB is to CK , as M to GL : and CD, GH are equimultiples of CK, GL; wherefore, by Cor. Prop. 4. B. 5. AB is to CD, as M to GH. And, by the hypothesis, AB is to $C D$, as $E F$ to $G H$; therefore M is equal to EF by M Prop. 9. Book 5. and consequently EF is the same multiple of GL that $A B$ is of $C K$.

PROP. D. B. V.
This is not unfrequently used in the demonstration of other propositions, and is necessary in that of Prop. 9. B. 6. It seems Theon has left it out for the reasons mentioned in the notes, at Prop. A.

> PROP. VIII. B. V.

In the demonstration of this, as it is now in the Greek, there are two cases (see the demonstration in Hervagius, or Dr. Gregory's edition), of which the first is that in which AE is less than EB; and in this it necessarily follows, that $\mathrm{H} \odot$ the multiple EB is greater than ZH the same multiple of AE , which last multiple, by the construction, is gteater than Δ; whence also $\mathrm{H} \Theta$ must be greater than Δ : But in the second case, viz. that in which EB is less than AE, though ZH be greater than Δ, yet He may be less than the same Δ;-so that there

N O TES.

there cannot be taken a multiple of Δ which is the first that is greater than K or $н \Theta$, because Δ itself is greater than it : Upon this account, the author of this demonstration found it necessary to change one part of the construction that was madeuse of in the first case: But he has, without any necessity, changed also another part of it, viz. when he orders to take N that multiple of Δ which is the first that is greater than ZH ; for he might have taken that multiple of Δ which is the first that is greater than $H \Theta$, or K, as was done in the first case: He likewise brings in this K into the demonstration of both cases, without any'reason; for it serves to no purpose but to lengthen the
 demonstration. There is also a third case which is not mentioned in this demonstration, viz. that in which AE in the first, or EB in the second of the two other cases, is greater than D ; and in this any equimultiples, as the doubles, of AE, EB are to be taken, as is done in this edition, where all the cases are at once demonstrated: And from this it is plain that Theon, or some other unskilful editor, has vitiated this proposition.
PROP. IX. B. V.

Of this there is given a more explicit demonstration than that which is now in the Elements.

PROP.X. B. V.

IT was necessary to give another demonstration of this proposition, because that which is in the Greek and Latin, or other editions, is not legitimate: For the words greater, the same, or equal, lesser, have a quite different meaning when applied to magnitudes and ratios, as is plain from the 5 th and 7 th definitions of Book 5. By the help of these let us examine the demonstration of the roth Prop. which proceeds thus: "Let A have to C a greater ratio than B to C : I say that A is "greater than B ; for if it is not greater, it is either equal or "less. But A cannot be equal to B , because then each of them "s would have the same ratio to C ; but they have not. There"fore A is not equal to B." The force of which reasoning is this: If A had to C the same ratio that B has to C, then if

NOTES.

Boos V. any equimultiples whatever of A and B be taken, and any multiple whatever of C; if the multiple of. A be greater than the multiple of C , then, by the 5 th def. of Book 5, the multiple of B is also greater than that of C : but, from the hypothesis that A has a greater ratio to C , than B has to C , there must, by the 7 th def. of Book 5, be certain equimultiples of A and B , and some multiple of C such, that the multiple of A is greater than the multiple of C, but the multiple of B is not greater than the same multiple of \mathbf{C} : And this proposition directly contradicts the preceding; wherefore A is not equal to B. The demonstration of the roth prop. goes on thus: "But " neither is A less than B; because then A would have a less " ratio to C than B has to it: But it has not a less ratio, there"fore $A_{\text {, is not less than } B, " ~ \& c . ~ H e r e ~ i t ~ i s ~ s a i d, ~ t h a t ~ " A ~}^{\text {. }}$ "c would have a less ratio to C than B has to C," or, which is the same thing, that B would have a greater ratio to C than A to C ; that is, by 7 th def. Book 5 , there must be some equimultiples of B and A, and some multiple of C, such that the multiple of B is greater than the multiple of C, but the multiple of A is not greater than it': And it ought to have been proved, that this can never happen if the ratio of Λ to C be greater than the ratio of \mathbf{B} to \mathbf{C}; that is, it should have been proved, that, in this case, the multiple of A is always greater than the multiple of C, whenever the multiple of B is greater than the multiple of \mathbf{C}; for when this is demonstrated, it will be evident that B cannot have a greater ratio to C , than A has to C , or, which is the same thing, that A cannot have a less ratio to C than B has to C . But this is not at all proved in the 10th proposition: But if the ioth were once demonstrated, it would immediately follow from it, but cannot without it be easily demonstrated, as̀ he that tries to do it will find. Wherefore the roth proposition is not sufficiently demonstrated. And it seems that he who has given the demonstration of the roth proposition as we now have it, instead of that which Eudoxus or Euclid had given, has been deceived in applying what is manifest, when understood of magnitudes, unto ratios, viz. that a magnitude cannot be both greater and less than another. That those things which are equal to the same are equal to one another, is a most evident axiom when understood of magnitudes; yet Euclid does not make use of it to infer, that those ratios which are the same to the same ratio, are the same to one another; but explicitly demonstrates this in Prop. II. of Book 5. The demonstration we have given of the 10th prop.

NOTES.

is no doubt the same with that of Eudoxus or Euclid, as it is immediately and directly derived from the definition of a greater ratio, viz. the 7 of the 5 .

The above-mentioned proposition, viz. If A have to C_{2} greater ratio than B to C; and if of A and B there be taken certain equimultiples, and some multiple of C; then if the multiple of B be greater than the multiple of C , the multiple of A is also greater than the same, is thus demonstrated:

Let D, E be equimultiples of A, B, and F a multiple of C , such, that E the multiple of B is greater than F; D the multiple of A is also greater than F .

Because A has a greaterratio to C , than B to C, A is greater than B , by the roth Prop. B. 5, therefore D the multiple of A is greater than E the same multiple of B: And E is greater than F: much more therefore D is greater than F.

PROP. XIII. B. V.

In Commandine's, Briggs's, and Gregory's translations; at the beginning of this demonstration, it is said, "And the mul"tiple of C is greater than the multiple of D ; but the mul"t tiple of E is not greater than the multiple of F :" Which words are a literal translation from the Greek: But the sense evidently requires that it be read, "so that the multiple of C "be greater than the multiple of D ; but the multiple of E be " not greater than the multiple of F." And thus this place was restored to the true reading in the first editions of Commandine's Euclid, printed in 8vo. at Oxford: But in the later editions, at least in that of 1747 , the error of the Greek text was kept in.

There is a corollary added to prop. 13, as it is necessary to the 2oth and 2Ist prop. of this book, and is as useful as the proposition.

> PROP. XIV. B. V.

The two cases of this, which are not in the Greek, are added; the demonstration of tbem not being exactly the same with that of the first case.

PROP. XVII. B. V.

The order of the words in a clause of this is changed to one more natural: As was also done in prop, ir.

> PROP. XVIII. B. V.

The demonstration of this is none of Euclid's, nor is it legitimate; for it depends upon this hypothesis, that to any three magnitudes, two of which, at least, are of the same kind, there may be a fourth proportional: which, if not proved, the demonstration now in the text is of no force: But this is assumed without any proof; nor can it, as far as I am able to discern, be demonstrated by the propositions preceding this : so far is it from' deserving to be reckoned an axiom, as Cla vius, after other commentators, would have it; at the end of the definitions of the 5th book. Euclid does not demonstrate it, nor does he shew how to find the fourth proportional, before the 12th prop. of the 6th book: And he never assumes any thing in the demonstration of a proposition, which he had not before demonstrated; at least, he assumes nothing the existence of which is not evidently possible; for a certain conclusion can never be deduced by the means of an uncertain proposition: Upon this account, we have given a legitimate demonstration of this proposition instead of that in the Greek and other editions, which very probably Theon, at least some other, has put in the place of Euclid's, because he thought it too prolix: And as the 17 th prop. of which this 18 th is the converse, is demonstrated by help of the Ist and 2nd propositions of this book; so, in the demonstration now given of the 18th, the 5 th prop. and both cases of the 6th are necessary, and these two propositions are the converses of the Ist and 2d. Now the 5 th and 6 th do not enter into the demonstration of any proposition in this book as we now have it: Nor can they be of use in any proposition of the Elements, except in this 18th, and this is a manifest proof, that Euclid made use of them in his demonstration of it, and that the demonstration now given, which is exactly the converse of that of the 17 th, as it ought to be, differs nothing from that of Eudoxus or Euclid: For the 5th and 6th have undoubtedly been put into the 5 th book for the sake of some propositions in it, as all the other propositions about equimultiples have been.

Hieronymus Saccherius, in his book named "Euclides ab "omni nævo vindicatus," printed at Milan ann. 1733, in 4 to,
acknowledges this blemish in the demonstration of the 18 th, and that he may remove it, and render the demonstration we now have of it legitimate, he endeavours to demonstrate the following proposition, which is in page 115 of his book, viz.
"Let. A, B, C, D be four magnitudes, of which the two " first are of the one kind, and also the two others either of the "same kind with the two first, or of some other the same "kind with one another. I say the ratio of the third C to the " fourth D, is either equal to, or. greater, or less than the ratio " of the first A to the second B."

And after two propositions premised as lemmas, he proceeds thus:
"Either among all the possible equimultiples of the first "A, and of the third C , and, at the same time, among all "the possible equimultiples of the second B, and of the " fourth D, there can be found some one multiple EF of the "first A, and one IK of the second B, that are equal to one "another; and also (in the same case) some one multiple "GH of the third C equal to LM the multiple of the fourth " D, or such equality is no where to be found.- If the first "case happen, "[i, e. if such "equality is to "be found] it " is - manifest "from what is "before demon"strated, that "A is to B
"as C to D; but if such simultaneous equality be not to be "found upon both sides, it will be found either upon one "s side, as upon the side of A [and B]; or it will be found "upon neither side; if the first happen: therefore (from "Euclid's definition of greater and lesser ratio foregoing) "A has to B a greater or less ratio than C to D ; according "as GH the multiple of the third C is less, or greater "than LM the multiple of the fourth D: But if the second "case happen ; therefore upon the one side, as upon the side "of A the first and B the second, it may happen that the "multiple EF [viz. of the first] may be less than IK the " multiple of the second, while, on the contrary, upon the "other side [viz. of C and D], the multiple GH [of the third ${ }^{\text {"C }}$] is greater than the other multiple LM [of the fourth "D]: And then (from the same definition of Euclid) the ratio

NOTES.

Book V. " of the first A to the second B, is less than the ratio of the " third C to the fourth D ; or on the contrary.
"Therefore the axiom [i. e. the proposition before set down] "remains demonstrated," \&c.

Not in the least; but it still remains undemonstrated; For what he says may happen, may, in innumerable cases, never happen; and therefore his demonstration does not hold: For example, if A be the side, and B the diameter of a square; and C the side, and D the diameter of another square; there can in no case be any multiple of A equal to any of B ; nor any one of C equal to one of D, as is well known; and yet it can never happen that when any multiple of A is greater than a multiple of B , the multiple of C can be less than the multiple of D, nor when the multiple of A is less than that of B, the multiple of C can be greater than that of D, viz. taking equimultiples of A and C, and equimultiples of B and D : For $-A, B, C, D$ are proportionals; and so if the multiple of A be greater, \&cc. than that of B, so must that of C be greater, \&c. than that of D ; by 5th Def. b. 5.

The same objection holds good against the demonstration which some give of the first prop. of the 6th book, which we have made against this of the 18th prop. because it depends upon the same insufficient foundation with the other.

PROP. XIX. B. V.

A corollary is added to this, which is as frequently used as the proposition itself. The corollary which is subjoined to it in the Greek, plainly shews that the 5th book has been vitiated by editors who were not geometers: For the conversion of ratios does not depend upon this 1ath, and the demonstration. which several of the commentators on Cuclid give of conversion is not legitimate, as Clavius has rightly observed, who has given a good demonstration of it which we have put in proposition E; but he makes it a corollary from the 19 th, and begins it with the words, "Hence it easily follows,", though it does not at all follow from it.

PROP: XX. XXI. XXII. XXIII. XXIV. B. V.

The demonstration of the 20th and 2 xst propositions, are shorter than those Euclid gives of easier propositions, either in the preceding or following books: Wherefore it was proper to make them more explicit, and the 22 d and 23 d proposions are, as they ought to be; extended to any number of magnitudes :

N O TES.

magnitudes: And, in like manner, may the 24 th be, 2 s is Boos V. taken notice of in the corollary; and another corollary is added, as useful as the proposition, and the words, "any whatever" are supplied near the end of prop. 23, which are wanting in the Greek text, and the translations from it.

In a paper writ by Philippus Naudæus, and published after his death, in the history of the Royal Academy of Sciences of Berlin, anno 1745 , page 50 , the $23^{\text {d }}$ prop. of the 5 th book is censured as being obscurely enunciated, and, because of this, prolixly demonstrated: The enunciation there given is not Euclid's, but Tacquet's, as he acknowledges, which, though not so well expressed, is, upon the matter, the same with that which is now in the Elements. Nor is there any thing obscure in it, though the author of the paper has set down the proportionals in a disadvantageous order, by which it appears to be obscure : 'But no doubt Euclid enunciated this 23d, as well as the 22 d , so as to extend it to any number of magnitudes, which, taken two and two, are proportionals, and not of six only; and to this general case, the enunciation which Naudæus gives, cannot be well applied.

The demonstration which is given of this 23^{d}, in that paper, is quite wrong; because, if the proportional magnitudes be plane or solid figures, there can no rectangle, (which he improperly calls a product) be conceived to be made by any two of them: And if it should be said, that in this case straight lines are to be taken which are proportional to the figures, the demonstration would this way become much longer than Euclid's: But, even though his demonstration had been right, who does not see that it could not be made use of in the 5 th book?
PROP. F, G, H, K. B. V.

These propositions are annexed to the 5 th book, because they are frequently made use of by both ancient and modern geometers : And in many cases, compound ratios cannot be brought into demonstration, without making use of them.

Whoever desires to see the doctrine of ratios delivered in this 5 th book solidly defended, and the arguments, brought against it by And. Tacquet, Alph. Borellus and others, fully refuted, may read Dr. Barrow's mathematical lectures, viz. the 7 th and 8th of the year 1666 .

The 5th book being thus corrected, I most readily agree to what the learned Dr. Barrow says,* "That there is nothing
" in the whole body of the Elements of a more subtile inven"tion, nothing more solidly established, and more accurately " handled, than the doctrine of proportionals." And there is some ground to hope, that geometers will think that this could not have been said with as good reason, -since 'Theon's time till the present. .

DEF. II. and V. of B. VI.

$\underbrace{\text { Boox VI. THE 2d definition does not seem to be Euclid's but some }}$ unskilful editor's: For there is no mention made by Euclid, nor, as far as I know, by any other geometer, of reciprocal figures: It is obscursly expressed, which made it proper to render it more distinct: It would be better to put the following definition in place of it, viz.

DEF. II.

Two magnitudes are said to be reciprocally proportional to two others, when one of the first is to one of the other magnitudes, as the remaining one of the last two is to the remaining one of the first.

But the 5th definition, which, since Theon's time has been kept in the elements, to the great detriment of learners, is now justly thrown out of them, for the reasons given in the notes on the 23 d prop. of this book.

PROP. I. and II. B. VI.

To the first of these a corollary is added, which is often used: And the enunciation of the second is made more general.

PROP. III B. VI.

A second case of this, as useful as the first, is given in prop. A; viz. the case in which the exterior angle of a triangle is bisected by a straight line: The demonstration of it is very like to that of the first case, and upon this account may, probably, have been left out, as also the enunciation, by some unskilful editor. At least, it is certain, that Pappus makes use of this case, as an elementary proposition, without a demonstration of it, in Prop. 39, of his 7th Book of Mathematical Collections.

PROP. VII. B. VI.

To this a case is added which occurs not unfrequently in demonstration.

PROP. VIII. B. VI.

IT seems plain that some editor has changed the demonstration that Euclid gave of this proposition: For, after he has demonstrated, that the triangles are equianguiar to one another, he particularly shews that their sides about the equal angles are proportionals, as if this had not been done in the demonstration of the 4th prop. of this book: This superfluous part is not found in the translation from the Arabic, and is now left out.

> PROP. IX. B. VI.

This is demonstrated in a particular case, viz. that in which the third part of a straight line is required to be cut off; which is not at all like Euclid's manner: Besides, the author of the demonstration, from four magnitudes being proportionals, concludes that the third of them is the same multiple of the fourth, which the first is of the second; now, this is no where demonstrated in the 5 th book, as we now have it: But the editor assumes it from the confused notion which the vulgar have of proportionals: On this account it was necessary to give a general and legitimate demonstration of this proposition.

PROP. XVIII. B. VI.

The demonstration of this seems to be vitiated: For the proposition is demonstrated only in the case of quadrilateral figures, without mentioning how it may be extended to figures of five or more sides: Besides, from two triangles being equiangular, it is inferred, that a side of the one is to the homologous side of the other, as another side of the first is to the side homologous to it of the other, without permutation of the proportionals; which is contrary to Euclid's manner, as is clear from the next proposition: And the same fault occurs again in the conclusion, where the sides about the equal angles are not shewn to be proportionals, by reason of again neglecting permutation. Oit these accounts, a demonstration is given in Euclid's manner, like to that he makes use of in the 20th

Book VI. prop. of this book; and it is extended to five-sided figures, by which it may be seen how to extend it to figures of any number of sides.

PROP. XXIII. B. VI.

Nothing is usually reckoned more difficult in the elements of geometry by learners, than the doctrine of compound ratio, which Theon has rendered absurd and ungeometrical, by substituting the 5th definition of the 6th book in place of the right definition, which without doubt Eudoxus or Euclid gave, in its proper place, after the definition of triplicate ratio, $\& c$. in the 5th book. Theon's definition is this; a ratio is

 translates: "Quando rationum quantitates inter se multi"plicatæ aliquam efficient rationem;" that is, when the quantities of the ratios being multiplied by one another make a certain ratio. Dr. Wallis translates the word $\pi \eta \lambda เ x \circ \tau \eta \tau \varepsilon s$ "rationem exponentes," the exponents of the ratios: And Dr. Gregory renders the last words of the definition by "illius "facit quantitatem," makes the quantity of that ratio: But in whatever sense the "quantities," or "exponents of the ratios," and their "multiplication," be taken, the definition will be ungeometrical and useless: For there can be no multiplication but by a number: Now the quantity or exponent of a ratio (according to Eutochius in his Comment, on Prop. 4. Book 2. of Arch. de Sph. et Cyl. and the moderns explain that term) is the number which multiplied into the consequent term of a ratio produces the antecedent, or, which is the same thing, the number which arises by dividing the antecedent by the consequent; but there are many ratios such, that no number can arise from the division of the antecedent by the consequent ; ex. gr. the ratio of which the diameter of a square has to the side of it ; and the ratio which the circumference of a circle has to its diameter, and such like. Besides, that there is not the least mention made of this definition in the writings of Euclid, Archimedes, Apollonius, or other ancients, though they frequently make use of compound ratio: And in this 23 d prop. of the 6th book, where compound ratio is first mentioned, there is not one word' which can relate to this defnition, though here, if in any place, it was necessary to be brought in; but the right definition is expressly cited in these words: "But the "ratio of K to M is compounded of the ratio of K to L_{2}
" and of the ratio of L to M." This definition therefere of Boos VI. Theon is quite useless and absurd: For that Theon brought it into the Elements can scarce be doubted ; as it is to be found
 where he a!so gives a childish explication of it, as agreeing only to such ratios as can be expressed by numbers; and from this place the definition and explication have been exactly copied and prefixed to the definitions of the 6th book, as appears from Hervagius's edition: But Zambertus and Commandine, in their Latin translations, subjoin the same to these definitions. Neither Campanus, nor, as it seems, the Arabic manuscripts, from which he made, his translation, have this definition. Clavius, in his observations upon it, rightly judges, that the definition of compound ratios might have been made after the same manner in which the definitions of duplicate and triplicate ratio are given, viz. "That as in several magni" tudes that are continual proportionals, Euclid named the " ratio of the first to the third, the duplicate ratio of the first " to the second; and the ratio of the first to the fourth, the " triplicate ratio of the first to the second, that is, the ratio "compounded of two or three intermediate" ratios that are "equal to one another, and so on; so, in like manner, if " there be several magnitudes of the same kind, following one " another, which are not continual proportionals, the first is "s said to have to the last the ratio compounded of all the inter" mediate ratios, -only for this reason, that these inter" mediate ratios are interposed betwixt the two extremes, viz: " the first and last magnitudes; even as, in the roth definition " of the 5th book, the ratio of the first to the third was called " the duplicate ratio, merely upon account of two ratios " being interposed betwixt the extremes, that are equal to one " another: so that there is no difference betwixt this com" pounding of ratios, and the duplication or triplication of " them which are defined in the 5 th book, but that in the du"s plication, triplication, \&c. of ratios, all the interposed ratios " are equal to one another; whereas, in the compounding of "ratios, it is not necessary that the intermediate ratios should "be equal to one another." Also Mr. Edmund Scarburgh, in his Einglish translation of the first six books, page 238 , 266, expressly affirms, that the 5th definition of the 6th book is suppositious, and that the true definition of compound ratio is contained in the 1oth definition of the 5th book, viz. the

BoorvI. definition of duplicate ratio, or to be understood from it, to wit, in the same manner as Clavius has explained it in the preceding citation. Yet these, and the rest of the moderns, do not withstanding retain this 5 th def. of the 6:h book, and illustrate and explain it by long commentaries, when they ought rather to have taken it quite away from the Elements.

For, by comparing def. 5, book 6 , with prop. 5 , book 8 , it will clearly appear that this definition has been put into the Elements in place of the right one, which has been taken out of them: Because, in prop. 5 , book 8 , it is demonstrated, that the plane number of which the sides are C, D, has to the plane number of which the sides are E, Z (see Hervagius's or Gregory's edition), the ratio which is compounded of the ratios of their sides; that is, of the ratios of C to E , and D to Z ; and by def. 5. book 6, and the explication given of it by all the commentators, the ratio which is compounded of the ratios of C to E, and D to Z, is the ratio of the product made by the multiplication of the antecedents C, D, to the product by the consequents E, Z, that is, the ratio of the plane number of which the sides are C, D, to the plane number of which the sides are $\mathrm{E}, 7$. . Wherefore the proposition which is the 5 th def. of book 6 , is the very same with the 5 th prop. of book 8 , and therefore it ought necessarily to be cancelled in one of these places; because it is absurd that the same proposition should stand as a definition in one place of the Elements, and be demonstrated in another place of them. Now, there is no doubt that prop. 5, book 8, should have a place in the Elements, as the same thing is demonstrated in it concerning plane numbers, which is demonstrated in prop. 23, book 6, of equiangular parallelograms; wherefore def. 5 , book 6 , ought not to be in the Elements. And from this it is evident that this definition is not Euclid's, but Theon's, or some other unskilful geometer's.

But nobody, as far as I know, has hitherto shewn the true use of compound ratio, or for what purpose it has been introduced into geometry; for every proposition in which compound ratio is made use of, may without it be both enunciated and demonstrated. Now the use of compound ratio consists wholly in this, that by means of it, circumlocutions may be avoided, and thereby propositions may be more briefly either cnunciated or demonstrated, or both may be done; for instance, if this 23^{d} proposition of the sixth book were to be enunciated, without mentioning compound ratio, it might be

N O TES.

done as follows: If two parallelograms be equiangular, and if as a side of the first to a side of the second, so any assumed straight line be made to a second straight line; and as the other side of the first to the other side of the second, so the second straight line be made to a third. The first parallelogram is to the second, as the first straight line to the third. And the demonstration would be exactly the same as we now have it. But the ancient geometers, when they observed this enunciation could be made shorter, by giving a name to the ratio which the first straight line has to the last, by which name the intermediate ratios might likewise be signified, of the first to the second, and of the second to the third, and so on, if there were more of them, they called this ratios of the first to the last, the ratio compounded of the ratio of the first to the second, and of the second to the third straight line; that is, in the present example, of the ratios which are the same with the ratios of the sides, and by this they expressed the proposition more briefly thus: If there be two equiangular parallelograms, they have to one another the ratio which is the same with that which is compounded of ratios that are the same with the ratios of the sides; which is shorter than the preceding enunciation, but has precisely the same meaning. Or yet shorter thus: Equiangular parallelograms have to one another the ratio which is the same with that which is compounded of the ratios of their sides. And these two enunciations, the first especially, agree to the demonstration which is now in the Greek. The proposition may be more briefly demonstrated, as Candalla does, thus: Let ABCD, CEFG be two equiangular parallelograms, and complete the parallelogram CDHG ; then, because there are three parallelograms, AC , CH, CF, the first AC (by the definition of compound ratio) has to the third CF, the ratio which is compounded of the ratio of the first AC to the second CH , and of the ratio of CH to the third CF ; but the parallelogram AC is to the parallelogram CH , as the straight line BC to CG ; and the parallelogram CH is to CF , as the straight
 line $C D$ is to $C E$; therefore the parallelogram AC has to $C F$ the ratio which is compounded of ratios that are the same with the ratios of the sides. And to this demonstration agrees the enunciation which is at present in the text, viz. equiangular

NOTES.

Buok VI. parallelograms have toone another the ratio which is compounded of the ratios of the sides: for the vulgar reading "which ss is compounded of their sides," is absurd. But, in this edition, we have kept the demonstration which is in the Greek text, though not so short as Candalla's; because the way of finding the ratio which is compounded of the ratio of the sides, that is, of finding the ratio of the parallelograms, is shewn in that, but not in Candalla's demonstration; whereby beginners may learn, in like cases, how to find the ratio which is compounded of two or more given ratios.

From what has been said, it may be observed, that in any magnitudes whatever of the same kind $A, B, C, D, \& c$. the ratio compounded of the ratios of the first to the second, of the second to the third, and so on to the last, is only a name or expression by which the ratio which the first A has to the last D is signified, and by which at the same time the ratios of all the magnitudes A to B, B to C, C to D , from the first to the last, to one another, whether they be the same, or be not the same, are indicated; as in magnitudes which are continual proportionals $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, 8 \mathrm{c}$. the duplicate ratio of the first to the second is only a name, or expression by which the ratio of the first A to the third C is signified, and by which, at the same time, is shewn, that there are two ratios of the magnitudes from the first to the last, viz. of the first A to the second B, and of the second B to the third or last C, which are the same with one another; and the triplicate ratio of the first to the second is a name or expression by which the ratio of the first A to the fourth D is signified, and by which, at the same time, is shewn, that there are three ratios of the magnitudes from the first to the last, viz. of the first A to the second B; and of B to the third C, and of C to the fourth or last D, which are all the same with one another; and so in the case of any other multiplicate ratios. And that this is the right explication of the meaning of these ratios is plain from the definitions of duplicate and triplicate ratio, in which Euclid makes use of the word $\lambda_{\varepsilon y \varepsilon \tau \alpha u}$, is said to be, or is called; which word he, no doubt, made use of also in the definition of compound ratio, which Theon, or some other, has expunged from the Elements; for the very same word is still retained in the wrong definition of compound ratio, which is now the 5th of the 6th book: But in the citation of these definitions it is §ometimes retained, as in the demorstration of prop. Ig, book

N O T E S.

6, "the first is said to have, ixer $\lambda_{\varepsilon \gamma \leqslant \tau a}$, to the third the du- Book VI. " plicate ratio," \&c. which is wrong translated by Commandine and others, "has," instead of "is said to have:" and sometimes it is left out, as in the denoonstration of prop. 33, of the inth book, in which we find, "the first has, χ ' χ, to the "third the triplicate ratio;" but without doubt "Xe, "has," in this place, signifies the same as exem $\lambda_{\varepsilon \varepsilon \varepsilon \tau \pi}$, is said to have : so likewise in Prop. 23, B. 6, we nnd this citation, "but the "r ratio of K to M is compounded, cuyxei $\frac{\mathrm{c}}{}$ of the ratio of K to " L , and the ratio L to M ," which is a shorter way of expressing the same thing, which, according to the definition,
 compounded.

From these remarks, together with the propositions subjoined to the 5 ih book, all that is found concerning compound ratio, either in the ancient or modern geometers, may be understood and explained.

PROP. XXIV. B. VI.

IT seems that some unskilful editor has made up this demon stration as we now have it, out of two others; one of whichmay be made from the 2 d prop. and the other from the $4^{\text {th }}$ of this book. For after he has, from the 2d of this book, and composition and permutation, demonstrated, that the sides about the angle common to the two parallelograms are proportionals, he might have immediately concluded, that the sides about the other equal angles were proportionals, viz. from Prop. 34, B. I. and Prop. 7, B. 5. This he does not, but proceeds to shew, that the triangles and parallelograms are equiangular : and in a tedious way, by help of Prop. 4. of this book, and the 22d of book 5, deduces the same conclusion: From which it is plain, that this ill-composed demonstration is not Euclid's : These superfluous things are now left out, and a more simple demonstration is given from the $4^{t h}$ prop. of this book, the same which is in the translation from the Arabic, by help of the 2 d prop. and composition ; but in this the author neglects permutation, and does not shew the parallelograms to be equiangular, as is proper to do for the sake of beginners.

PROP. XXV. B. VI.

It is very evident that the demonst:ation which Euclid had given of this proposition has been vitiated by some unskilful hand: For, after this editor had demonstrated, that, "as the is rectilineal figure ABC is to the rectilineal KGH , so is the

NOTES.

Book vi. "parallelogram BE to the parallelogram EF ;" nothing more should have been added but this, " and the rectilineal figure « ABC is equal to the parallelogram BE ; therefore the recti" lineal KGH is equal to the parallelogram EF ," viz. from prop. 14, book 5. But betwixt these two sentences he has inserted this; "wherefore, by permutation, as the rectilineal "f figure ABC to the parallelogram BE , so is the rectilineal KGH "to the parallelogram EF; by which, it is plain, he thought it was not so evident to conclude, that the second of four proportions is equal to the fourth from the equality of the first and third, which is a thing demonstrated in the 14th prop. of B. 5 , as to conclude that the third is equal to the fourth, from the equality of the first and second, which is no where demonstrated in the Elements as we now have them: But though this proposition, viz. the third of four proportionals is equal to the fourth, if the first be equal to the second, had been given in the Elements by Euclid, as very probably it was, yet he would not have made use of it in this place; because, as was said, the conclusion could have been immediately deduced without this superfluous step by permutation: This we have shewn at the greater length; both because it affords a certain proof of the vitiation of the text of Euclid; for the very same blunder is found twice in the Greek text of prop. 23, book 11 , and twice in prop. 2, book 12, and in the 5, II, 12, and 18 th of that book; in which places of book 12 , except the last of them, it is rightly left out in the Oxford edition of Commandine's translation; And also that geometers may beware of making use of permutation in the like cases: for the moderns not unfrequently commit this mistake, and among others Commandine himself in his commentary on prop. 5 , book 3, p. 6, b. of Pappus Alexandrinus, and in other places: The vulgar notion of proportionals has, it seems, pre-occupied many so much, that they do not sufficiently understand the true nature of them.

Besides, though the rectilineal figure ABC , to which another is to be made similar, may be of any kind whatever; yet in the demonstration the Greek text has "triangle" instead of "rectilineal figure," which error is corrected in the abovenamed Oxford edition.

PROP. XXVII. B. VI.

The second case of this has $\dot{\alpha} \lambda \lambda \tilde{\omega} s$, otherwise, prefixed to it, as if it was a different demonstration, which probably has been done by some unskilful librarian. Dr. Gregory has
rightly left it out: The scheme of this second case ought to Buok VI. be marked with the same letters of the alphabet which are in the scheme of the first, as is now done.

PROP. XXVIII, and XXIX. B. VI.

These two problems, to the first of which the 27th prop. is necessary, are the most general and useful of all in the Elements, and are most frequently made use of by the ancient geometers in the solution of other problems; and therefore are very ignorantly left out by Tacquet and Dechales in their editions of the Elements, who pretend that they are scarce of any use: The cases of these problems, wherein it is required to apply a rectangle which shall be equal to a given square ; to a given straight line, either deficient or exceeding by a square ; are very often made use of by geometers: And, on this account, it is thought proper, for the sake of beginners, to give their constructions as follows :

1. To apply a rectangle which shall be equal to a given square, to a given straight line, deficient by a square: But the given square inust not be greater than that upon the half of the given line.

Let $A B$ be the given straight line, and let the square upon the given straight line C be that to which the rectangle to be applied must be equal, and this square by the determination is not greater than that upon half of the straight line $A B$.

Bisect AB in D , and if the square upon AD be equal to the square upon C, the thing required is done : But if it be not equal to it, AD must be greater than C , according to the determination: Draw $D E$ at right angles to $A B$ and make it equal to C ; produce $E D$ to F, so that EF be equal to AD or DB , and from the centre E, at the distance EF, describe a
 circle meeting $A B$ in G, and upon GB describe the square GBKH, and complete the rectangle AGHL; also join EG: And because AB is bisected in D , the rectangle AG, GB together with the square of DG is equal ${ }^{2}$ to (the square of $D B$, that is, of $E F$ or $E G$, that is a 5. 2.

$\underbrace{\text { Boox VI. }}$ to) the squares of ED, DG: Take away the square of DG

 from each of these equals; therefore the remaining rectangle AG, GB is equal to the square of ED , that is, of C : But the rectangle AG, GR is the rectangle AH , because GH is equal to GB ; therefore herectangle AH is equal to the given square upon the straight ane \mathbf{C}. Wherefore the rectangle AH , equal to the given square upon C , has been applied to the given straight line $A B$, deficient by the square GK. Which was to be done.2. To apply a rectangle which shall be equal to a given square, to a given straight line, exceeding by a square.
Let AB be the given straight line, and let the square upon the given straight line \mathbf{C} be that to which the rectangle to be applied must be equal.

Bisect AB in D , and draw BE at right angles to it, so that $B E$ be equal to C ; and having joined $D E$, from the centre D at the distance DE describe a circle meeting AB produced in G ; upon $B G$ describe the square BGHK, and complete the rectangle AGHL. And because AB is bisected in D, and produced to G, the rectangle AG, GB together with the square of DB
 or DE, that is, to) the squares of EB, BI. From each of these equals take the square of DB ; therefore the remaining rectangle $A G, G B$ is equal to the square of $B E$, that is, to the square upon C. But the rectangle $A G, G B$ is the rectangle $A H$, because GH is equal to GB . Therefore the rectangle AH is equal to the square upon \mathbf{C}. Wherefore the rectangle AH, equal to the given square upon C , has been applied to the given straight line AB , exceeding by the square GK. Which was to be done.
3. To apply a rectangle to a given straight line which shall be equal to a given rectangle, and be deficient by a square. But the given rectangle must not be greater than the square upon the half of the given straight line.

Let $A B$ be the given straight line, and let the given rectangle : be that which is contained by the straight lines C, D, which is not greater than the square upon the half of $A B$; it is required to apply to AB a rectangle equal to the rectangle C, D, deficient by a square.

Draw AE, BF at right angles to AB , upon the same side of Book VI. it, and make AE equal to C , and BF to D : join EF and bisect it in G; and from the centre G, at the distance $G E$, describe a circle meeting AE again in H : Join HF, and draw GK parallel to it, and GL parallel to AE, meeting AB in L.

Because the angle EHF in a semicircle is equal to the right angle $\mathrm{EAB}, \mathrm{AB}$ and HF are parallels, and AH and BF are parallels; wherefore AH is equal to BF , and the rectangle EA, AH equal to the rectangle EA, BF, that is, to the rectangle C, D : And because EG, GF are equal to one another, and AE, LG, BF parallels; therefore AL and LB are equal, also EK is equal to KH^{2} and the rectangle C, D, from 23.3. the determination, is not greater than the square of AL , the half of $A B$; wherefore the rectangle EA, AH is not greater than the square of $A L$, that is, of $\overline{\mathrm{K} G}$: Add to each the square of $K E$; therefore the square ${ }^{b}$ of $A K$ is not greater than the ${ }^{b} 6.2$. squares of $E K, K G$, that is, than the square of EG; and consequently the straight line AK or, GL is not greater than GE. Now, if GE be equal to GL, the circle EHF touches AB in L , and therefore the square of AL is ${ }^{c}$ equal to the rectangle EA, AH , that is, to the given rectangle C, D : and that which was required is done: But if $E G$, GL be unequal, EG must be the greater: and
 therefore the circle EHF cuts the straight line AB : let it cut it in the points M, N, and upon NB describe the square NBOP, and complete the rectangle ANPQ: Because LM is equal to ${ }^{d}$ 3.3. LN, and it has been proved that AL is equal to LB ; therefore $A . M 1$ is equal to NB, and the reCtangle AN, NB equal to the rectangle NA, AM, that is, to the rectangle e EA, AH, ecor.36.3. or the rectangle C, D : But the rectangle $A N, N B$ is the rectangle AP, because PN is equal to NB: Therefore the rectangle AP is equal to the rectangle C, D; and the rectangle. AP equal to the given rectangle C, D, has been applied to the given straight line $A B$, deficient by the square $B P$. Which was to be done.
4. To apply a rectangle to a given straight line that shall be equal to a given rectangle, exceeding by a square.

Let $A B$ be the given straight line, and the rectangle C, D the given rectangle, it is required to apply a rectangle to $A B$ equal to C, D, exceeding by a square.

Draw AE, BF at right angles to AB , on the contrary sides of it, and make $A E$ equal to C, and $B F$ equal to D : Join EF , and bisect it in G ; and from the centre G , at the distance GE, describe a circle meeting AE again in H ; join HF , and draw GL parallel to AE; let the circle meet $A B$ produced in M, N, and upon. BN describe the square BNOP, and complete the rectangle ANPQ; because the angle EHF in a semicircle is equal to the right angle $E A B, A B$, and $H F$ are parallels, and therefore AH and $B F$ are equal, and the rectangle EA, AH equal to the
 rectangle EA, BF, that is, to the rectangie C, D : And because ML is equal to LN , and $A L$ to $L B$, therefore $N_{-} A$ is equal to $B N$, and the rectangle AN, NB to MA, AN, that is, ${ }^{\text {a }}$ to the rectangle EA, AH, or the rectangle C, D : Therefore the rectangle AN, NB, that is, $A P$, is equal to the rectangle C, D; and to the given straight line $A B$ the rectangle $A P$ has been applied equal to the given rectangle C, D, exceeding by the square BP . Which was to be done.

Willebrordus Snellius was the first, as far as I know, who gave these constructions of the 3^{d} and 4 th Problems in his Apollonius Batavus: And afterwards the learned Dr. Halley gave them in the Scholium of the 18th Prop. of the 8th Book of Apollonius's Conics restored by him.

The 3d Problem is otherwise enunciated thus: Tocut a given straight line $A B$ in the point N, so as to make the rectangle AN, NB, equal to a given space: Or, which is the same thing, having given $A B$ the sum of the sides of a rectangle, and the magnitude of it being likewise given, to find its sides.

And the 4th Problem is the same with this, To find a point N in the given straight line $A B$ produced, so as to make the
rectangle AN, NB equal to a given space: Or, which is the Book VI, same thing, having given AB the difference of the sides of a rectangle, and the magnitude of it, to find the sides.

PROP. XXXI. B. VI.

In the demonstration of this, the inversion of proportionals is twice neglected, and is now added, that the conclusion may be legitimately made by help of the 24 th Prop. of B. 5, as Clavius had done.

PROP. XXXII. B. VI.

The enunciation of the preceding 26th Prop. is not general enough ; because not only two similar parallelograms that have an angle common to both, are about the same diameter; but likewise two similar parallelograms that have vertically opposite angles, have their diameters in the same straight lines: But there seems to have been another, and that a direct demonstration of these cases, to which this 32 d Proposition was needful ; And the 32d may be otherwise, and something more briefly demonstrated, as follows:

PROP. XXXII. B. VI.
If two triangles which have two sides of the one, \&ic.
Let GAF, 'HFC be two triangles which have two sides AG, GF, proportional to the two sides FH, HC, viz. AG, to GF , as FH to HC ; and let AG be parallel to FH , and GF to HC ; AF and FC are in a straight line.

Draw CK parallel ${ }^{2}$ to FH , and let it meet GF produced in K : Because AG, KC are each of them parallel to FH, they are parallel ${ }^{b}$ to one another, and therefore the alternate angles $\mathrm{AGF}, \mathrm{FKC}$ are
 equal: And $A G$ is to GF , as (FH to HC , that isc) CK to s 34.1. KF ; wherefore the triangles AGF, CKF are equiangular ${ }^{\mathrm{d}}, ₫ 6.6$. and the angle AFG equal to the angle CKF: But GFK is a straight line, therefore AF and FC are in a straight lineff ar e 14.1.

The 26th Prop. is demonstrated from the 32d, as follows:
If two similar and similarly placed parallelograms have an angle common to both, or vertically opposite angles; their diameters are in the same straight line.

First,

NOTES.

Boor VI. First, let the parallelograms ABCD, AEFG have the angle BAD common to both, and be similar, and similarly placed: $\mathrm{ABCDG}, \mathrm{AEFG}$ are about the same diameter.

Produce EF, GF, to H, K, and join FA, FC; then because the parallelograms $\mathrm{ABCD}, \mathrm{AEFG}$ are similar, DA is to AB , as GA to AE: Wherefore the re-
= Cor.19.5. mainder DG is ${ }^{\mathbf{1}}$ to the remainder EB , as GA to AE : But DG is equal to FH, EB to HC , and AE to CF: Therefore as FH to HC , so is AG to GF ; and FH, HC are parallel to AG, GF; and the triangles AGF, FHC are joined at one angle in the point F; where-
 fore AF, FC are in the same straight line ${ }^{\mathrm{b}}$.

Next, Let the parallelograms KFHC, GFEA which are similar and similarly placed, have their angles KFH, GFE vertically opposite ; their diameters AF, FC are in the same straight line.

Because AG, GF are parallel to FH, HC; and that $A G$ is to GF , as FH to HC ; therefore AF, FC are in the same straight line ${ }^{\text {b }}$.

PROP. XXXIII. B. VI.

The words "because they are at the centre," are left out as the addition of some unskilful hand.

In the Greek, as also in the Latin translation, the words $\ddot{\alpha} \varepsilon \tau v \chi \varepsilon$, "any whatever," are left out in the demonstration of both parts of the proposition, and are now added as quite necessary; and, in the demonstration of the second part, where the triangle BGC , is proved to be equal to CGi , the illative particle $\alpha p x$, in the Greek text ought to be omitted.'

The second part of the proposition is an addition of Theon's, as he tells in his commentary on Ptolemy's Meyann Vuvr $^{2} \alpha_{\xi}^{\xi} 5$, p. 50.

PROP. B. C. D. B. VI.
These three propositions are added, because they are frequently made use of by geometers.

DEF. IX and XI. ` B. XI.

THE similitude of plane figures is defined from the equality of their angles, and the proportionality of the sides about the equal angles; for from the proportionality of the-sides only, or only from the equality of the angles, the similitude of the figures does not follow, except in the case when the figures are triangles: The similar position of the sides which contain the figures, to one another, depending partly upon each of these: And for the same reason, those are similar solid figures which have all their solid angles equal, each to each, and are contained by the same number of similar plane figures: For there are some solid figures contained by similar plane figures, of the same number, and even of the same magnitude, that are neither similar nor equal, as shall be demonstrated after the notes on the 10th definition: Upon this account it was necessary to amend the definition of similar solid figures, and so place the definition of a solid angle before it: And from this and the roth definition, it is sufficiently plain how much the Elements have been spoiled by unskilful editors.

DEF. X. B. XI.

Since the meaning of the word "equal" is known and established before it comes to be used in this definition: therefore the proposition which is the roth definition of this book, is a theorem, the truth or falsehood of which ought to be demonstrated, not assumed; so that Theon, or some other editor, has ignorantly turned a theorem, which ought to be demonstrated in this roth definition: That figures are similar, ought to be proved. from the definition of similar. figures; that they are equal, ought to be demonstrated from the axiom, "Magnitudes that wholly coincide are equal to "one another;" or from Prop. A. of Book 5, or the gth Prop. or the 14 th of the same Book, from one of which the equality of all kinds of figures must ultimately be deduced. In the preceding books, Euclid has given no definition of equal figures, and it is certain he did not give this: For what is called the first def. of the third book, is really a theorem in which these circles are said to be equal, that have the straight lines from the centres to the circumferences equal, which is plain, from the definition of a circle; and therefore has by

N O TES.

Book XI.

rer

 The editor been improperly placed among the definitions. The equality of figures ought not to be defined, but demonstrated; Therefore, though it were true, that solid figures contained by the same number of similar and equal plane figures are equal to one another, yet he would justly deserve to be blamed who would make a definition of this proposition, which ought to be demonstrated. But if this proposition be not true, must it not be confessed, that geometers have, for these thirteen hundred years, been mistaken in this elementary matter? And this should teach us modesty, and to acknowledge how little, through the weakness of our minds, we are able to prevent mistakes, even in the principles of sciences which are justly reckoned amongst the most certain; for that the proposition is not universally true, can be shewn by many examples: The following is sufficient:Let there be any plane rectilineal figure, as the triangle
212.11. $A B C$, and from a point D within it draw ${ }^{2}$ the straight line DE at right angles to the plane ABC ; in DE take DE, DF equal to one another, upon the opposite sides of the plane, and let G be any point in EF ; join $\mathrm{DA}, \mathrm{DB}, \mathrm{DC} ; \mathrm{EA}, \mathrm{EB}$, $E C ; F A, F B, F C ; G A, G B, G C:$ because the straight line EDF is at right angles to the plane ABC , it makes right angles with $\mathrm{DA}, \mathrm{DB}, \mathrm{DC}$ which it meets in that plane ; and in the triangles $E D B, F D B, E D$ and $D B$ are equal to $F D$ and $D B$, each to each, and they contain right angles; therefore
-4.1. the base EB is equalb to the base FB; in the same manner EA is equal to $F A$, and $E C$ to FC : And in the triangles EBA, FBA, EB, BA, are equal to FB, BA, and the base EA is equal to the base FA ; wherefore the angle
car 1. FBA is equal ${ }^{\text {c }}$ to the angle FBA, and the triangle EBA equal b to the triangle FBA , and the other angles equal to the other angles ; there-
 fore these triangles are
similar ${ }^{\text {d }}$: In the same manner the triangle EBC is similar to
the triangle FBC , and the triangle EAC to FAC; therefore Book XI. there are two solid figures, each of which is contained by six triangles, one of them by three triangles, the common vertex of which is the point G , and their bases the straight lines AB , BC, CA, and by three other triangles, the common vertex of which is the point E, and their bases the same lines $A B$, $B C, C A$: The other solid is contained by the same three triangles the common vertex of w hich is G, and their bases $A B$, BC, CA : and by three other triangles of which the common vertex is the point F , and their bases the same straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$: Now the three triangles $\mathrm{GAB}, \mathrm{GBC}, \mathrm{GCA}$ are common to both solids, and the three others EAB, EBC, ECA of the first solid, have been shewn equal and similar to the three others FAB, FBC, FCA of the other solid, each to each: therefore these two solids are contained by the same number of equal and similar planes: But that they are not equal is manifest, because the first of them is contained in the other: Therefore it is not universally true that solids are equal which are contained by the same number of equal and similar planes.

Cor. From this it appears that two unequal solid angles may be contained by the same number of equal plane angles.
For the solid angle at B, which is contained by the four plane angles EBA, EBC, GBA, GBC is not equal to the solid angle at the same point B which is contained by the four. plane angles FBA, FBC, GBA, GBC; for this last contains the other : And each of them is contained by four plane angles, which are equal to one another, each to each, or are the self same, as has been proved: And indeed there may be innumerable solid angles all unequal to one another which are each of them contained by plane ang!es that are equal to one another, each to each: It is likewise manifest, that the beforementioned solids are not similar, since their solid angles are not all equal.
And that there may be innumerable solid angles all unequal to one another, which are each of them contained by the same plane angles disposed in the same order, will be plain from the three following propositions.

PROP. I. PROBLEM.

Three magnitudes, A, B, C being given, to find a fourth zuch, that every threeshall be greater than the remaining one.

N O TES.

$=$ Boor XI. Let D be the fourth: therefore D must be less than A, B, C together: Of the three A, B, C, let A be that which is not less than either of the two B and C : And first, let B and C together be not less than A; therefore B, C, D together are greater than A : and bacause A is not less than $B ; A, C, D$ together, are greater than B : In the like manner A, B, D together are greater than C ; Wherefore in the case in which B and C together are not less than A, any magnitude D which is less than A, B, C together, will answer the problem.

But if B and C together be less than A; then, because it is required that $\mathrm{B}, \mathrm{C}, \mathrm{D}$ together be greater than A , from each of these taking away B, C, the remaining one D must be greater than the excess of A above B and C : Take therefore any magnitude D which is less than A, B, C togeiher, but greater than the excess of A above B and C : Then, B, C, D together are greater than A; and because A is greater than either B or C, much more will A and D, together with either of the two B, C be greater than the other: And, by the construction, A, B, C are together greater than D.

Cor. If besides it be required, that A and B together shall not be less than C and D together; the excess of A and B together above C must not be less than D , that is, D must not be greater than that excess.

PROP. II. PROBLEM.

Four magnitudes A, B, C, D being given, of which A and B together are not less than C and D together, and such that any three of them whatever' are greater than the fourth; it is required to find a fifth magnitude E such, that any two of the three A, B, E shall be greater than the third, and also that any t wo of the three C, D, E shall be greater than the third. Let A be not less than B, and C not less than D.

First, Let the excess of C above D be not less than the excess of A above B: It is plain that a magnitude E can be taken which is less than the sum of C and D, but greater than the excess of C above D; let it be taken; then E is greater likewise than the excess of A above B ; wherefore E and B together are greater than A; and A is not less than B; therefore A and E together are greater than B : And, by the hypothesis, A and B together are not less than C and D together, and C and D together are greater than E; therefore likewise A and B are greater than E.

But let the excess of A above B be greater than the excess Boos x1. of C above D : And because, by the hypothesis, the three B , C, D are together greater than the fourth $\mathrm{A} ; \mathrm{C}$ anid D together are greater than the excess of A above B : Therefore a magnitude may be taken which is less than C and D together, but greater than the excess of A above B. Let this magnitude be E : and because E is greater than the excess of A above B, B together with E is greater than A: And, as in the preceding case, it may be shewn that A together with E is greater than B, and that A together with B is greater than E : Therefore, in each of the cases, it has been shewn, that any two of the three A, B, E are greater than the third.
And because in each of the cases E is greater than the excess of C above D, E together with D is greater than C ; and by the hypothesis, C is not less than D; therefore E together with C is greater than D ; and, by the construction, C and D together are greater than \mathbf{E}; Therefore any two of the three $\mathrm{C}, \mathrm{D}, \mathrm{E}$ are greater than the third.

PROP. III. THEOREM.

There may be innumerable solid angles all unequal to one another, each of which is contained by the same four plane angles, placed in the same order.

Take three plane angles, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, of which A is not less than either of the other two, and such, that A and B together are less than two right angles: and, by Problem \mathbf{I}, and its corollary, find a fourth angle D such, that any three whatever of the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be greater than the remaining angle, and such, that A and B together be not less than C and D together: And, by Problem 2, find a fifth angle E such, that any two of the angles A, B, E, be greater than the third,

and also that any two of the angles C, D, E be greater than

Book XI. the third: And because A and B together are less than two right angles, the double of A and B together is less than four right angles: 'But A and B together are greater than the angle E ; wherefore the double of, A, B together is greater than the three angles A, B, E together, which three are consequently less than four right angles; and every two of the same angles, A, B, E are greater than the third; therefore, by prop. 23, 11, a solid angle may be made contained by three plane angles, equal to the angles A, B, E, each to each. Let this be the angle F, contained by the three plane angles GFH, HFK, GFK, which ate equal to the angles A, B, E, each to each: And because the angles C, D togecher are not greater than the angles A, B together, therefore the angles C, D, E are not greater than the angles $\mathrm{A}, \mathrm{B}, \mathrm{E}$: But these last three are less than four right angles, as has beendemonstrated: wherefore also the angles C, D, E are together less than four right angles, and every two of them are greater than the third; therefore a solid angle may be made, which shall be contained by three plane angles equal to the angles C, D, E, each to

each ${ }^{2}$: And, by prop. 26, 11, at the point F, in the straight line FG, a solid angle may be made equal to that which is contained by the three plane angles that are equal to the angles C, D, E: Let this be made, and let the angle GFK, which is equal to E , be one of the three; and let KFL, GFL be the other two which are equal to the angles C, D, each to each. Thus there is a solid angle constituted at the point F , contained by the four plane angles GFH,'HFK, KFL, GFL, which are equal to the arigles A, B, C, D, each to each.

Again, Find another angle M such, that every two of the three angles A, B, M be greater than the third, and also cvery two of the three C, D, M be greater than the third:

N O TES.

And, as in the preceding part, it may be demonstrated, that Boor XI. the three $\mathrm{A}, \mathrm{B}, \mathrm{M}$. are less than four right angles, as also that the three $\mathrm{C}, \mathrm{D}, \mathrm{M}$, are less than four right angles. Make therefore ${ }^{3}$ a solid angle at N contained by the three plane angles ONP, PNQ, ONQ, which are equal to A, B, M, each to each: And by
 prop. 26, II, make at the point N^{\prime}, in the straight line ON , a solid angle contained by three plane angles, of which one is the angle ONQ equal to M, and the other two are the angles QNR, ONR, which are equal to the angles C, D, each to each. Thus, at the point N , there is a solid angle contained by the four plane angles ONP, PNQ, QNR, ONR which are equal to the angles A, B, C, D, each to each. And that the two solid angles at the points P, N, each of which is contained by the above-named four plane angles, are not equal to one another, or that they cannot coincide, will be plain by considering that the angles GFK, ONQ: that is, the angles E, M, are unequal by the construction; and therefore the straight lines GF, FK cannot coincide with ON, NQ , nor consequently can the solid angles, which therefore are unequal.

And because from the four plane angles A, B, C, D, there can be found innumerable other angles that will serve the same purpose with the angles E and M : it is plain that innumerable other solid angles may be constituted which are each contained by the same four plane angles, and all of them unequal to one another. Q.E. D.

And from this it appears, that Clavius and other authors are mistaken, who assert that those solid angles are equal which are contained by the same number of plane angles that are equal to one another, each to each. Also it is plain, that the 26th prop. of Book II, is by no means sufficiertily demonstrated, because the equality of two solid angles, whereof each is contained by three plane angles which are equal to one another, sach to each, is only assumed, and not demonstrated.

NOTES.

PROP. I. B. XI:

The words at the end of this, "for a straight line eannot " meet a straight line in more than one point," are left out, as an addition by some unskilful hand; for this is to be demonstrated, not assumed.

Mr. Thomas Simpson, in his notes at the end of the second edition of his Elements of Geometry, p. 262, after repeating the words of this note, adds "Now, can it possibly shew any " want of skill in an editor (he means Euclid or Theon) to re"fer to an axiom which Euclid himself hath Jaid down, Book 1, " $N^{\circ} 14$ "" he means Barrow's Euclid, for it is the roth in the Greek, "and not to have demonstrated, what no man can "demonstrate?" But all that in this case can follow from that axiom is, that, if two straight lines could meet each other in two points, the parts of them betwixt these points must coincide, and so they would have a segment betwixt these points common to both. Now, as it has not been shewn in Euclid, that they cannot have a common segment, this does not prove that they cannot meet in two points, from which their not having a common segment is deduced in the Greek edition : But, on the contrary, because they cannot have a common segment, as is shewn in Cor. of 11 th Prop. Book 1, of 4 to edition, it follows plainly, that they cannot meet in two points, which the remarker says no man can demonstrate.

Mr. Simpson, in the same notes, p. 265, justly observes, that in the corollary of Prop. 11, Book 1, 4 to edit. the straight lines $A B, B D, B C$, are supposed to be all in the same plane, which cannot be assumed in 1st Prop. Book II. This, soon after the $4^{\text {to }}$ edition was published, I observed and corrected as it is now in this edition: He is mistaken in thinking the roth axiom he mentions here to be Euclid's; it is none of Euclid's, but is the 10th in Dr. Barrow's edition, who had it from Herigon's Cursus, vol. I. and in place of it the corollary of 1 Ith Prop. Book 1, was added.

PROP. II. B. XI.

This proposition seems to have been changed and vitiated by some editor; for all the figures defined in the 1st Book of the Elements, and among them triangles, are, by the hypothesis, plane figures; that is, such as are described in a plane; wherefore the second part of the enunciation needs no demonstration. Besides, a convex superficies may be terminated by
three straight lines meeting one another: The thing that Boox XI, should have been demonstrated is, that two or three straight lines, that meet one another, are in one plane. And as this is not sufficiently done, the enunciation and demonstration are changed into those now put into the text.
PROP. III. B. XI.

In this proposition the following words near to the end of it are left out, viz. "therefore DEB, DFB are not straight lines; " in the like manner it may be demonstrated, that there can be " no other straight line between the points D, B:" Because from this, that two lines include a space, it only follows that one of them is not a straight line : And the force of the argument lies in this, viz. if the common section of the planes be not a straight line, then two straight lines could include a space, which is absurd; therefore the common section is a straight line.

> PROP. IV. B. XI.

THE words "and the triangle AED to the triangle BEC" are omitted, because the whole conclusion of the 4 th Prop. B. I, has been so often repeated in the preceding books, it was needless to repeat it here.

> PROP. V. B. XI.

In this, near to the end, $\boldsymbol{\varepsilon} \pi!\pi \pm 80$ ought to be left out in the Greek text: And the word "plane" is rightly left out in the Oxford edition of Commandine's translation.

PROP. VII. B. XI.

This proposition has been put into this book by some unskilful editor, as is evident from this, that straight lines which are drawn from one point to another in a plane, are, in the preceding books, supposed to be in that plane: And if they were not, some demonstrations in which one straight line is supposed to meet another would not be conclusive, because these lines would not meet one another: For instance, in Prop. 30 , B. I, the straight line GK would not meet EF, if GK were not in the plane in which are the parallels AB, CD, and in which, by hypothesis, the straight line EF is: Besides, this 7th Proposition is demonstrated by the preceding 3 d ; in which the very thing which is proposed to be demonstrated in the 7 th is twice assumed, viz. that the straight line drawn from one point to another in a plane, is in that plane; and the same thing is assumed in the preceding 6th Prop. in which the straight line

N OTES.

$\underbrace{\text { Boor XI. which joins the points } B, D \text { that are in the plane to which }}$ $A B$ and $C D$ are at right angles, is supposed to be in that plane : And the 7th, of which another demonstration is given, is kept in the book merely to preserve the number of the propositions; for it is evident, from the 7 th and 35 th definitions of the Ist book, though it had not been in the Elements.

> PROP. VIII. B. XI.

In the Greck, and in Commandine's and Dr. Gregory's translations, near to the end of this Proposition, are the following words: "But DC is in the plane through BA, AD," instead of which, in the Oxford edition of Commandine's translation is rightly put, "but DC is in the plane through BD , DA." But all the editions have the following "vords, viz. "because $\mathrm{A}, \mathrm{B}, \mathrm{BD}$ are in the plane through BD, DA, and "DC is in the plane in which are AB, BD, " which are manifestly corrupted, or have been added to the text; for there was not the least necessity to go so far about to shew that DC is in the same plane in which are $B D, D A$, because it immediately follows, from Prop. 7, preceding, that $\mathrm{BD}, \mathrm{DA}_{\text {, }}$ are in the plane in which are the parallels AB, CD : Therefore, instead of these words, there ought only to be, "because all "three are in the plane in which are the parallels $A B, C D . "$
PROP. XV. B. XI.

After the words, "and because BA is parallel to GH ," the following are added, "for each of them is parallel to $D E$, " and are not both in the same plane with it," as being manifestly forgotten to be put into the text.

PROP. XVI. B. XI.

In this, near to the end, instead of the words, "but straight " lines which meet neither way," ought"to be read, "but "straight lines in the same plane which produced meet neither "way:" Because, though in citing this definition in Prop. 27, Book I, it was not necessary to mention the words, "in the "same plane," all the straight lines in the books preceding this being in the same plane; yet here it was quite necessary.
PROP. XX. . B. XI.

In this, near the beginning, are the words, "But if not, let "BAC be the greater:" But the angle BAC may happen to be equal to one of the other two: Wherefore this place should

N OTES.

be read thus, "But if not, let the angle BAC be not lessthan "either of the other two, but greater than DAB."

At the end of this proposition it is said, " in the same man" ner it may be demonstrated," though there is no need of any demonstration; because the angle BAC being not less than either of the other two, it is evident that BAC together with one of them is greater than the other.

> PROP. XXII. B. XI.

And likewise in this, near the beginning, it is said, "But " if not, let the angles at $\mathrm{B}, \mathrm{E}, \mathrm{H}$ be unequal, and let the "angle at B be greater than either of those at E, H :" Which words manifestly shew this place to be vitiated, because the angle at B may be equal to one of the other two. They ought therefore to be read thus, "But if not, let the angles at B, E, " H be unequal, and let the angle at B be not less than either " of the other two at E, H: Therefore the straight line AC " is not less than either of the two DF, GK."

PROP. XXIII. B. XI.

The demonstration of this is made something shorter, by not repeating in the third case the things which were demonstrated in the first; and by making use of the construction which Campanus has given; but he does not demonstrate the second and third cases: The construction and demonstration of the third case are made a little more simple than in the Greek text.

> PROP. XXIV. B. XI.

The word " similar" is added to the enunciation of thisproposition, because the planes containing the solids which are to be demonstrated to be equal to one another, in the 25 th proposition, ought to be similar and equal, that the equality of the solids may be inferred from Prop. C. of this Book: And in the Oxford edition of Commandine's translation, a corollary is added to Prop. 24, to shew that the parallelograms mentioned in this proposition are similar, that the equality of the solids in Prop. 25, may be deduced from the roth def. of Book II.

PROP. XXV and XXVI. B. XI.

In the $25^{\text {th }}$ Prop. solid figures which are contained by the same number of similar and equal plane figures, are supposed to be equal to one another. And it seems that Theon, or some

Boox XI; other editor, that he might save himself the trouble of demonstrating the solid figures mentioned in this proposition to be equal to one another, has inserted the roth def. of this Book, to serve instead of a demonstration: which was very ignorantly done.

Likewise in the 26th Prop. two solid angles are supposed to be equal : If each of them be contained by three plane angles which are equal to one another, each to each. And it is strange enough, that none of the commentators on Euclid have, as far as I know, perceived, that something is wanting in the demonstrations of these two propositions. Clavius, indeed, in a note upon the rith def. of this Book, affirms, that it is evident that those solid angles are equal which are contained by the same number of plane angles, equal to one another, each to each, because they will coincide, if they be conceived to be placed within one another ; but this is said without any proof, nor is it always true, except when the solidangles are contained by three plane angles only, which are equal to one another, each to each: And in this case the proposition is the same with this, that two spherical triangles that are equilateral to one another, are also equiangular to, one another, and can coincide : which ought not to be granted without a demonstration. Euclid does not assume this in the case of rectilineal triangles, but demonstrates in Prop. 8, Book I, that triangles which are equilateral to one another, are also equiangular to one another; and from this their total equality appears by Prop. 4. Book 1. And Menelaus, in the 4th Prop. of his first Book of Spherics, explicitly demonstrates, that spherical triangles which are mutually equilateral, are also equiangular to one another; from which it is easy to shew that they must coincide, providing they have their sides disposed in the same order and situation.

To supply these defects, it was necessary to add the three Propositions marked A, B, C to this Book. For the 25 th, 26th, and 28th Propositions of it, and consequently eight others, viz. the 27 th, 3 rst, $32 \mathrm{~d}, 33^{\text {d }}, 34^{\text {th }}, 36$ th, 37 th, and 40 th of the same, which depend upon them, have hitherto stood upon an infirm foundation; as also, the 8th, 12 th Cor. of 17 th and 18th of 12th Book, which depend upon the gth definition. For it has been shewn in the notes on def. 1oth of this book, that solid figures which are contained by the same number of similar and equal plane figures, as also solid angles that are contained by the same number of equal plane angles, are not always equal to one another.

It is to be observed that Tacquet, in his Euclid, defines Boos Mr. equal solid angles tobe such, "as being put within one another "do coincide;" but this is an axiom, not a definition; for it is true of all magnitudes whatever. He made this useless definition, that by it he might demonstrate the 36 th Prop. of this Book, without the help of the 35 th of the same: Concerning which demonstration, see the note upon Prop. 36.

PROP. XXVIII. B. XI.

In this it ought to have been demonstrated, not assumed, that the diagonals are in one plane. Clavius has supplied this defect.

> PROP. XXIX. B. XI.

There are three cases of this proposition; the first is, when the two parallelograms opposite to the base AB have a side common to both: the second is, when these parallelograms are separated from one another; and the third, when there is a part of them common to both; and to this last only, the demonstration that has hitherto been in the Elements does agree. The first case is immediately deduced from the preceding 28th Prop. which seems for this purpose to have been premised to this 29 th, for it is necessary to none but to it, and to the 40 th of this book, as we now have it, to which last, it would, without doubt, have been premised, if Euclid had not made use of it in the 2gth ; but some unskilful editor has taken it away from the Elements, and has mutilated Euclid's demonstration of the other two cases, which is now restored, and server for both at once.

PROP. XXX. B. XI.

In the demonstration of this, the opposite planes of the solid CP , in the figure in this edition, that is, of the solid CO in Commandine's figure, are not proved to be parallel; which it is proper to do for the sake of learners.

PROP. XXXI. B. XI.

There are two cases of this proposition; the first is, when the insisting straight lines are at right angles to the bases; the other, when they are not; the first case is divided again into two others, one of which is, when the bases are equiangular parallelograms; the other, when they are not equiangular:

Book XI. The Greck editor makes no mention of the first of these two last cases, but has inserted the demonstration of it as a part of that of the other: And therefore should have taken notice of is in a corollary ; but we thought it better to give these two cases separately: The demonstration also is made something shorter by following the way Euclid hàs made use of in Prop. 14, Book 6. Besides, in the demonstration of the case in which the insisting straight lines are not at right angles to the bases, the editor does not prove that the solids described in the construction, are parallelopipeds, which it is not to be thought that Euclid neglected : also the words, "of which the insisting "straight lines are not in the same straight lines," have been added by some unskilful hand; for they may be in the same straight lines.

PROP. XXXII. B. XI.

The editor has forgot to order the parallelogram FH to be applied in the angle. FGH equal to the angle LCG, which is necessary. Clavius has supplied this.

Also, in the construction, it is required to complete the solid of which the base is FH , and altitude the same with that of the solid CD : But this does not determine the solid to be completed, since there may be innumerable solids upon the same base, and of the same a!titude: It ought therefore to be said, "complete the solid of which the base is FH, and one of " its insisting, straight lines is FD:" The same correction must be made in the following Proposition 33.

PROP. D. B. XI.

It is very probable that'Euclid gave this proposition a place in the Elements, since he gave the like proposition concerning equiangula: parallelograms in the 23 d B. 6 .

PROP. XXXIV. B. XI.

 "of which the insisting straight lines are not in the same "straight lines," are thrice repeated: but these words ought either to be.left out, as they are by Clavius, or, in place of then, ought to be put, "whether the insisting straight lines be, " or be not in the same straight lines:" For the other case is, without any reason, excluded; also the words $\tilde{\omega} v \tau i \psi n$, of
NOTES.
 "s which the insisting straight lines "", which is a plain mistake: . For the altitude is always at right angles to the base.

PROP. NXXV. B. XI.

The angles ABH , DEM are demonstrated to be right ansgles in a shorter way than in the Greek; and in the same way $\hat{A} C H, D F M$ may be demonstrated to be right angles: Also the repetition of the same demonstration, which begins with " in the same manner," is lett out, as it was probably added to the iext by some editor: for the words "in like manner "we may demonstrate," are not inserted except when the demonstration is not given, or when it is something different from the other if it be given, as in Prop. 26, of this Book. Campanus has not this repetition.

We have given another demonstration of the corollary, besides the one in the original, by help of which the following 35th Prop. may be demonstrated without the 35th.

PROP. XXXYI. B. XI.

TacQuet in his Euclid demonstrates this proposition without the help of the 35 ch ; but it is plain, that the solids mentioned in the Greek text in the enunciation of the proposition as equiangular, are such that their solid angles are contained by three plane angles equal to one another, each to each; as is evident from the construction. Now Tacquet does not demonstrate, but assumes these solid angles to be equal to one another; for te supposes the solids to be already made, and does not give the construction by which they are made: But, by the second demonstration of the preceding corollary, his demonstration is rendered legitimate likewise in the case where the solids are constructed as in the text.

PROP. XXXVII. B. XI.

Is this it is assumef, that the ratios which are triplicate of those ratios which are the same with one another, are likewise the same with one another; and that those ratios are the same with one, another, of which the triplicate ratios are the same with one another; but this ought not to be granted without a demonstration; ror did Euclid assume the first and easiest of these two propositions, but demonstrated it in the case of duplicate ratios, in the 22nd Prop. Book 6. On this account, another demonstration is given of this Proposition like to that which Euclid gives in Prop. 22, Book 6, as Clavius has done.

PROP. XXXVIII. B. XI.

When it is required to draw a perpendicular from a point in one plane which is at right angles to another plane, unto this last plane, it is done by drawing a perpendicular from the point to the common section of the planes; for this perpendicular will be perpendicular to the plane, by def. 4 , of this Book: And it would be foolish in this case to do it by the rith

- 17.12. in other editions.

N OTES. Prop. of the same: But Euclid ${ }^{3}$, Apollonius, and other geometers, when they have occasion for this problem, direct a perpendicular to be drawn from the point to the plane, and conclude that it will fall upon the common section of the planes, because this is the very same thing as if they had made use of the construction above mentioned, and then concluded that the straight line must be perpendicular to the plane: but is expressed in fewer words: Some editor, not perceiving this, thought it was necessary to add this proposition, which can never be of any use to the I Ith book, and its being near to the end among propositions with which it has no connection, is a mark of its having been added to the text.

PROP. XXXIX. B. XI.

In this it is supposed, that the straight lines which bisect the sides of the opposite planes, are in one plane, which ought to have been demonstrated; as is now done.

B. XII.

Book xir. THE learned Mr. Mbore, Professor of Greek in the University of Glasgow, observed to me, that it plainly appears from Archimedes's Epistle to Dositheus, prefixed to his books of the Sphere and Cylinder, which epistle he has restored from ancient manuscripts, that Eudoxus was the author of the chief propositions in this 12 th book.

PROP. II. B. XII.

At the beginning of this it is said, "if it be not so, the square " of BD shall be to the square of FH , as the circle ABCD is " to some space either less than the circle EFGH; or greater "than it:" And the like is to be found near to the end of this proposition, as also in Prop. 5, 11, 12, 18, of this Book: Con-
eerning which it is to be observed, that in the demonstration Boox XII. of theorems, it is sufficient, in this and the like cases, that a thing made use of in the reasoning can possibly exist, providing this be evident, though it cannot be exhibited or found by a geometrical construction: So , in this place, it is assumed, that there may be a fourth proportional to these three magnitudes, viz. the squares of BD, FH, and the circle ABCD ; because it is evident that there is some square equal to the circle ABCD though it cannot be found geometrically; and to the three rectilineal figures, viz. the squares of BD, FH, and the square which is equal to the circle ABCD , there is a fourth square proportional ; because to the three straight lines which are their sides, there is a fourth straight line proportional ${ }^{2}, 2$ 20. 6. and this fourth square, or a space equal to it, is the space which in this proposition is denoted by the letter S : And the like is to be under stood in the other places above cited: And it is probable that this has been shewn by Euclid, but left out by some editor; for the lemma which some unskilful hand has added to this proposition explains nothing of it.

PROP. III. B. XII.

In the Greek text and the translations, it is said, " and " because the two straight lines BA, AC which meet one ano "ther," \&ic. here the angles BAC, KHL, are demonstrated to be equal to one another, by Ioth Prop. B. In, which had been done before: Because the triangle EAG was proved to be similar to the triangle KHL : This repetition is left out, and the triangles BAC, KHL are proved to be similar in a shorter way by Prop. 21. B. 6.

PROP. IV. B. XII.

A FEW things in this are more fully explained, than in the Greek text.

PROP. V. B. XII.

 " as was before shewn;" and the same are found again in the end of Prop. 18, of this Book; but the demonstration referred to, except it be in the useless lemma annexed to the 2d Prop. is no where in these Elements, and has been perhaps left out by some editor, who has forgot to cancel those words also.

NOTES.

PROP. VI. B. XII.

A SHORTER demonstration is given of this; and that which is in the Greek text may be made shorter by a step than it is : For the author of it makes use of the 22 d Prop. of B. 5, twice: Whereas once would have served his purpose; because that proposition extends to any number of magnitudes which are proportionals taken two and two, as well as to three which are proportional to other three.

COR. PROP. VIII. B. XII.

The demonstration of this is imperfect, because it is not shewn, that the triangular pyramids into which those upon multangular bases are divided, are similar to one another, as ought necessarily to have been done, and is done in the like case in Prop. 12 of this Book: The full demonstration of the corollary is as follows :

Upon the polygona! bases ABCDE, FGHKL, let there be similar and similarly situated pyramids which have the points M, N for their vertices: 'The pyramid ABCDEM has to the pyramid FGHKLN the triplicate ratio of that which the side $A B$ has to the homologous side FG.

Let the polygons be divided into the triangles $\mathrm{ABE}, \mathrm{EBC}$,
a go. 6. ECD; FGL, LGH, LHK, which are similar ${ }^{2}$, each to each :
-11. def. 11 And because the pyramids are similar, therefore ${ }^{b}$ the triangle EAM is similar to the triangle LFN, and the triangle ABM
4.6. to FGN: Wherefore ${ }^{c}$ ME is to EA, as NL to LF; and as

$A E$ to EB, so is FL to IG, because the triangles EAB, I.FG are similar; therefore, ex æquali, as ME to EB , so is NL to

LG: In like manner it may be shewn, that EB is to BM, as Book XII. LG to GN ; therefore, again, ex equali, as EM to $M B$, so is LN to NG: Wherefore the triangles EMB, LNG having their sides proportionals, are equiangular, and similar to one ${ }^{d} 5.6$. another: Therefore the pyramids which have the triangles $\mathrm{EAB}, \mathrm{LFG}$ for their bases, and the points M, N for their vertices, are similar ${ }^{\text {b }}$ to one another, for their solid angles are ${ }^{c}$, 011 . def. 11 equal, and the solids themselves are contained by the same num- ${ }^{\text {e }}$ B: 11 . ber of similar planes: In the same manner the pyramid EBCM may be shewn to be similar to the pyramid LGHN, and the pyramid ECDM to LHKN: And because the pyramids EABM, LFGN are similar, and have triangular bases, the pyramid EABM hasf to LFGN the triplicate ratio of that which ${ }^{5}$ 8. 12. EB has to the homologous side LG. And, in the same manner, the pyramid EBCM has to the pyramid LGHN the triplicate ratio of that which EB has to LG: Therefore as the pyramid EABM is to the pyramid LFGN, so is the pyramid EBCM to the pyramid IGHN : In like manner, as the pyramid EBCM is to LGHN, so is the pyramid ECDM to the pyramid LHKN : And as one of the antecedents is to one of the consequents, so are all the antecedents to all the consequents: Therefore as the pyramid EABM to the pyramid LFGN, so is the whole pyramid ABCDEM to the whole pyramid FGHKLN : And the pyramid EABM has to the pyramid LFGN the triplicate ratio of that which $A B$ has to FG; therefore the whole pyramid has to the whole pyramid the triplicate ratio of that which AB has to the homologous side FG. Q. E. D.

PROP. XI and XII. B. XII.

THE order of the letters of the alphabet is not observed in these two propositions, according to Euclid's manner, and is now restored: By which means, the first part of prop: 12, may be demonstrated in the same words with the first part of Prop. II.; on this account the demonstration of that first part is left out and assumed from Prop. II.

PROP. XIII. B. XII.

In this proposition, the common section of a plane parallel to the bases of a cylinder, with the cylinder itself, is supposed to be a circle, and it was thought proper briefly to demonstrate it; from whence it is sufficiently manifest, that this plane divides the cylinder into two others: And the same thing is understood to be supplied in Prop. I4.

Boox XII.

PROP. XV. B. XII.

" And complete the cylinders AX, EO," both the enunciation and exposition of the proposition represent the cylinders as well as the cones, as already described: Wherefore the reading ought rather to be, "and let the cones be ALC, "ENG; and the cylinders AX, EO."

The first case in the second part of the demonstration is wanting; and something also in the second case of that part, before the repetition of the construation is mentioned; which are now added.

PROP. XVII. B. XII.

In the enunciation of this proposition, the Greek words

 dine and others, "in majori solidum polyhedrum describere "quod minoris sphere superficiem nol tangat;" that is, "to "describe in the greater sphere a solid polyhedron which shall " not meet the superficies of the lesser sphere:" Whereby they refer the words nara τ, p omipaviay to these next to them tens Encoroovos opaugas: But they ought by no means to be thus translated; for the solid polyhedron doth not only meet the superficies of the lesser sphere, but pervades the whole of that sphere: Therefore the aforesaid words are to be referred to ro eresson $\pi 0 \lambda v i \delta \% a y$, and ought thus to be translated, viz. to describe in the greater sphere a solid polyhedron whose superficies shall not meet the lesser sphere; as the meaning of the proposition necessarily reguires.

The demonstration of the proposition is spoiled and mutilated: For some easy things are very explicitly demonstrated, while others not so obvious are not sufficiently explained; for example, when it is affirmed, that the square of KB is greater than the double of the square of $B Z$, in the first demonstration; and that the angle BZK is obtuse, in the second: Both which ought to have been demonstrated: Besides, in the first demonstration, it is said, "draw $\mathrm{K} \Omega$ from the point K , perpen"dicular to BD;" whereas it ought to have been said, "join " KV ," and it should have been demonstrated, that KV . is perpendicular to BD: For it is evident from the figure in Herragius's and Gregory's editions, and from the words of the
demonstration, that the Greek editor did not perceive that the Boox XII. perpendicular drawn from the point K to the straight line BD must necessarily fall upon the point V, for in the figure it is made to fall upon the point Ω, a different point from V, which is likewise supposed in the demonstration. Commandine seems to have been aware of this; for in this figure he marks one and the same point with two letters V, Ω; and before Commandine, the learned John Dee, in the commentary he annexes to this proposition in Henry Billingsley's translation of the Elements, printed at London, ann. 1570, expressly takes notice of this error, and gives a demonstration suited to the construction in the Greek text, by which he shews that the perpendicular drawn from the point K to BD , must necessarily fall upon the point V.

Likewise it is not demonstrated, that the quadrilateral figures SOPT, TPRY, and the triangle YRX, do not meet the lesser sphere, as-was necessary to have been done : only Clavius, as far as I know, has observed this; and demonstrated it by a lemma, which is now premised to this proposition, something altered, and more briefly demonstrated.

In a corollary of this proposition, it is supposed that a solid polyhedron is described in the other sphere similar to that which is described in the sphere BCDE; but, as the construction by which this may be done is not given, it was thought proper to give it, and to demonstrate, that the pyramids in it are similar to those of the same order in the solid polyhedron described in the sphere BCDE.

From the preceding notes, it is sufficiently evident how much the Elements of Euclid, who was a most accurate geometer, have been vitiated and mutilated by ignorant editors. The opinion which the greatest part of learned men have entertained concerning the present Greek edition, viz. that it is very little or nothing different from the genuine work of Euclid, has without doubt deceived them, and made them lessattentive and accurate in examining that edition; whereby several errors, some of them gross enough, have escaped their notice from the age in which Theon lived to this time. Upon which account there is some ground to hope that the pains we have taken in correcting those errors, and freeing the Elements as far as we could from blemishes, will not be unacceptable to good judges, who can discern when demonstrations are legitimate, and when they are not.

NOTES.

Book XIt, The objections which, since the first edition, have been made against some things in the notes, especially against the doctrine of proportionals, have either been fully answered in Dr. Barrow's Lect. Mathemat. and in these notes ; or are such, except one which has been taken notice of in the tote on Prop. 1. Book 11, as shew that the persoin who made them has not sufficiently considered the things against which they are brought; so that it is not necessary to make any further answer to these objections and others like them against Euclid's definition of proportionals, of which definition Dr. Barrow justly says in page 297 of the above named book, that "Nisi machinis impulsa validioribus ieternum persistet incon" cussa."

E UCLID'S

D A T ,

in thils edition

SEVERAL ERRORS ARE CORRECTED,
AND
SOME PROPOSITIONS ADDED.

By ROBERT SIMSON, M.D.

Emeritus Professor of Mathematics in the University of Glasgerr.
LONDON:

Printed for F. Wisgrate, in the Strand, Successor to Mr. Noersse, 1806.
(4) A A

 x x

 nose -1 s. vi मival a - N6TM. 21 काणा।

 ank

 4Tリ $\therefore \beta$

PREFACE.

Euclids data is the first in order of the books written by the ancient geometers to facilitate and promote the method of resolution or analysis. In the general, a thing is said to be given which is either actually exhibited, or can be found out, that is, which is either known by hypothesis, or that can be demonstrated to be known ; and the propositions in the book of Euclid's Data shew what things can be found out or known from those that by hypothesis are already known; so that in the analysis or investigation of a problem, from the things that are laid down to be known or given, by the help of these propositions other things are demonstrated to be given, and from these, other things are again shewn to be given, and so on, until that which was proposed to be found out in the problem is demonstrated to be given; and when this is done, the problem is solved, and its composition is made and derived from the compositions of the Data which were made use of in the analysis. And thus the Data of Euclid are of the most general and necessary use in the solution of problems of every kind.

Euclid is reckoned to be the author of the Book of the Data, both by the ancient and modern geometers; and there seems to be no dóubt of his having written a book on this subject, but which, in the course of so many ages, has been much vitiated by unskilful editors in several places, both in the order of the propositions, and in the definitions and demonstrations themselves. To correct the
errors which, are now found in it, and bring it nearer to the accuracy with which it was, no doubt, at first written by Euclid, is the design of this edition, that so it may be rendered more useful to geometers, at least to beginners who desire to learn the investigatory method of the ancients. And for their sakes, the compositions of most of the Data are subjoined to their demonstrations, that the compositions of problems solved by help of the Data may be the more easily made.

Marinus the philosopher's preface, which, in the Greek edition, is prefixed to the Data, is here left out, as being of no use to understand them. At the end of it, he says, that Euclid has not_used the synthetical but the analytical method in delivering them; in which he is quite mistaken; for in the analysis of a theorem, the thing to be demonstrated is assumed in the analysis; but in the demonstrations of the Data, the thing to be demonstrated, which is, that something or other is given, is never once assumed in the demonstration, from which it is manifest, that every one of them is demonstrated synthetically; though indeed, if a proposition of the Data be turned into a problem, for example, the 84th or 85 th in the former editions, which here are the 85 th and 86 th, the demonstration of the proposition becomes the analysis of the problem.

Wherein this edition differs from the Greek, and the reasons of the alterations from it, will be shewn in the notes at the end of the Data.

EUCLID'S DATA.

DEFINITIONS.

I.

SPACES, lines, and angles, are said to be given in magnitude, when equals to them can be found.
II.

A ratio is said to be given, when a ratio of a given magnitude to a given magnitude which is the same ratio with it can be found.

III.

Rectilineal figures are said to be given in species, which have each of their angles given, and the ratios of their sides given. IV.

Points, lines, and spaces, are said to be given in position, which have always the same situation, and which are either actually exhibited, or can be found.
A.

An angle is said to be given in position, which is contained by straight lines given in position.
V.

A circle is said to be given in magnitude, when a straight line from its centre to the circumference is given in magnitude.
VI.

A cirele is said to be given in position and magnitude, the centre of which is given in position, and a straight line from it to the circumference is given in magnitude.
Vill.

Segments of circles are said to be given in magnitude, when the angles in them, and their bases, are given in magnitude. VIII.

Segments of circles are said to be given in position and magnitude, when the angles in them are given in magnitude, and their bases are given both in position and magnitude.
IX.

A magnitude is said to be greater than another by a given magnitude, when this given magnitude being taken from it, the remainder is equal to the other magnitude.
X. A.

X.

A magnitude is said to be less than another by a given magnitude, when this given magnitude being added to it, the whole is equal to the other magnitude.

PROPOSITION I:

See $\bar{N} . \quad{ }^{2}$ THE ratios of given magnitudes to one another is given.

Let A, B be two given magnitudes, the ratio of A to B is. given. -

Because A is a given magnitude, there may
${ }^{2}$ 1. def. ${ }^{2}$ be found one equal to it ; let this be C: dat. And because B is given, one equal to it may be found; let it be D; and since A is equal
-7.5. to. C, and B to. D : therefore ${ }^{b} A$ is to B, as C to D; and consequently the ratio of A to B is given, because the ratio of the given magnitudes C, D, which is the same with it,
 has been found.

Sce N. . F a given magnitude has a given ratio to another magnitude, "and if unto the two magnitudes by "which the given ratio is exhibited, and the given " magnitude, a fourth proportional can be found;" the other magnitude is given.

- Let the given magnitude A have a given ratio to the magnitude B ; if a fourth proportional can be found to the three magnitudes above named, B is given in magnitude.
Because A is given, a magnitude may be

PROP. II.

 found equal to it 2; let this be C : And because the ratio of A to B is given, a ratio which is the same with it may be found ; let this be the ratio of the given magnitude E to the given magnitude F : Unto the magnitudes E, F, C, find a fourth proportional D , which, by the hypothesis, can be done. Wherefore, because A is to B, as E to F; and as E to F; so is C to $D ; A$ is to B, as C to

[^14]D A TA.
D. But A is equal to C; therefore ${ }^{c} B$ is equal to D. The ${ }^{c} 14.5$. magnitude B is therefore given ${ }^{2}$, because a magnitude D equal $: 1$. def. to it has been found.

The limitation within the inverted commas is not in the Greek text, but is now necessarily added; and the same must be understood in all the propositions of the book which depend upon this second proposition, where it is not expressly mentioned. See the note upon it.

PROP. III.

IF any givell magnitudes be added together, their sum shall be given.

Let any given magnitudes AB, BC be added together, their sum $A C$ is given.

Because $A B$ is given, a magnitude equal to it mays be found; \& 1 . def. let this be DE: And because BC is given, one equal to it may be found; let this be EF: Wherefore, because AB is equal to DE , and BC equal to $E F$; the whole $A C$ is equal to
 the whole DF : AC is therefore given, because DF has been found which is equal to it.

> PROP. IV.

IF a given magnitude be taken from a given magnitude; the remaining magnitude shall be given.

From the given magnitude $A B$, let the given magnitude AC be taken; the remaining magnitude CB is given.

Because $A B$ is given, a magnitude equal to it may ${ }^{2}$ be 1 des. found ; let this be DE: And because AC is given, one equal to it may be found; let this be DF: Wherefore because $A B$ is equal to $D E$, and $A C$ to DF ; the remain-
 der $C B$ is equal to the remainder FE. CB is therefore given ${ }^{2}$, because FE which is equal tr, it has been found.

EUCDID'S

12.

PROP. V.

Sce s .

IF. of three magnitudes, the first together with the second be given, and also the second together with the third; either the first is equal to the third, or one of them is greater than the other by a given magnitude.

Let $A B ; B C, C D$ be three magnitudes, of which $A B$ together with $B C$, that is, $A C$, is given; and also $B C$ together with $C D$, that is, $B D$, is given. Either $A B$ is equal to $C D$, or one of them is greater than the other by a given magnitude.

Because $A C, B D$ are each of them given, they are either equal to one another, or not equal. First, let them be equal, and be-
 cause $A C$ is equal to $B D$, take away the common part $B C$; therefore the remainder AB is equal to the remainder CD .

But if they be unequal, let $A C$ be greater than $B D$, and make CE equal to BD . Therefore CE is given, because BD is given. And the whole AC is
4. dat., given; therefore ${ }^{\mathrm{a}} \mathrm{AE}$ the remainder is given. And because EC is $A^{\prime} E \quad B \quad C \quad D$ equal to BD , by taking BC from both, the remainder $E B$ is equal to the remainder $C D$. And $A E$ is given; wherefore $A B$ exceeds $E B$, that is, $C D$, by the given magnitude AE.
5.

PROP. VI.
See N. F a magnitude has a given ratio to a part of it, it shall also have a given ratio to the remaining part of it.

Let the magnitude $A B$ have a given ratio to $A C$ a part of it; it has also a given ratio to the remainder BC .

Because the ratio of $A B$ to $A C$ is given, a ratio may be
2. def.
-4. 4 .dat.
cE. 5. found ${ }^{\text {a }}$ which is the same to it: Let this be the ratio of DE, a given magnitude to the given magnitude DF. And because DE, DF are given, the remainder FE is ${ }^{\mathrm{b}}$ given : And because $A B$ is to $A C$, as DE to
 $D F$, by conversion ${ }^{c} A B$ is to $B C$, as DE to LF . Therefore the ratio of AB to BC is given, because the ratio of the given magnitudes DE, EF, which is the same with it, has been found.

Cor. From this it follows, that the parts AC, CB have a given ratio to one another: Because as AB to BC , so is DE to EF; by division ${ }^{\text {d }}, \mathrm{AC}$ is to CB, as DF to FE ; and $\mathrm{DF}, \mathrm{FE}{ }^{\text {d }} \mathrm{T}$. s. are given ; therefore the ratio of AC to CB is given.

PROP. VII.

IfF two magnitudes which have a given ratio to See N . one another, be added together; the whole magnitude shall have to each of them a given ratio.
Let the magnitudes $A B, B C$, which have a given ratio to one another, be added together; the whole AC has to each of the magnitudes, $A B, B C$ a given ratio.

Because the ratio of AB to BC is given, a ratio may be found ${ }^{2}$ which is the same with it ; let this be the ratio of the 2. def. given magnitudes DE, EF : And because DE, EF are given, the whole DF is given ${ }^{\text {b }}$: And because as $A B$ to $B C$, so is $D E$ to $E F$; by composition ${ }^{\star} \mathrm{AC}$ is to CB as DF to

D F F - 3. dat. FE ; and, by conversiond, AC is to AB , as DF to $\mathrm{DE}:$: E .5 . Wherefore because $A C$ is to each of the magnitudes $A B, B C$, as $D F$ to each of the others $D E, E F$; the ratio of $A C$ to each of the magnitudes AB, BC is givena.

PROP. VIII.

ItF a given magnitude be divided into two parts See N . which have a given ratio to one another, and if a fourth proportional can be found to the sum of the two magnitudes by which the given ratio is exhibited, one of them, and the given magnitude; each of the parts is given.
Let the given magniitude $A B$ be divided into the parts $A C$, CB , which have a given ratio to one antother; if a fourth proportional can be found to the abovenamed magnitudes; AC and CB are each of them given.

Because the ratio of AC to CB is
 given, the ratio of AB to BC is given 2 therefore a ratio r . dat. . which

EUCLID'S

which is the same with it can be found ${ }^{\text {b }}$, let this be the ratio of the given magnitudes, $D E, E F$: And because the given magnitude $A B$ has to $B C$ the given ratio of $D E$ to EF , if unto $\mathrm{DE}, \mathrm{EF}, \mathrm{AB}$ a fourth proportional can be found; this which
${ }^{\text {c } 2 . ~ d a t o ~ i s ~} B C$ is given; and because $A B$ is given, the other part $A C$
du. dat. is given ${ }^{\text {d }}$
In the same manner, and with the like limitation, if the difference $A C$ of two magnitudes $A B, B C$, which have a given ratio be given; each of the magnitudes $A B, B C$ is given.
8. PROP. IX.

Magnitudes which have given ratios to the same magnitude, have also a given ratio to one another.

Let A, C have each of them a given ratio to B : A has a given ratio to C .

Because the ratio of A to B is given, a ratio which is the * \because def. same to it may be found ${ }^{2}$; let this be the ratio of the given magnitudes. D, E : And because the ratio of B to C is given, a ratio which is the same with it may be found ${ }^{3}$; let this be the ratio of the given magnitudes F; G: To F, G, E find a fourth proportional H , if it can be done; and because as A is to B , so is D to E; and as B to C, so is (F to G, and so is) E to H ; ex æquali, as A to C_{2} so is D to H : Therefore
 the ratio of A to C is given², because the ratio of the given manitudes D and H , which is the same with it has been found: But if a fourth proportional to F, G, E can-
 not be found, then it can only be said that the ratio of A to C is compounded of the ratios of A to B, and B to C, that is, of the given ratios of D to E, and $F G$.

$$
\text { D A TA: } 365
$$

I
F two or more magnitudes have giren ratios to one another, and if they have given ratios, though they be not the same, to some other magnitudes: these other magnitudes shall also have given ratios to one another.

Let two or more magnitudes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ have given ratios to one another; and let them have given ratios, though they be not the same, to some other magnitudes $\mathrm{D}, \mathrm{E}, \mathrm{F}$: The magnitudes $\mathrm{D}, \mathrm{E}, \mathrm{F}$ have given ratios to one another.
Because the ratio of A to B is given, and likewise the ratio of A to D; therefore the ratio of D to B is given ${ }^{2}$; but the ratio of B to E is given, thereforea the ratio of D to E is given: And because the ratio of B to C is given, and
 also the ratio of B to E ; the ratio of E to C is given ${ }^{2}$: And the ratio of C to F is given; wherefore the ratio of E to F - is given: D, E, F have therefore given ratios to one another.

PROP. XI.

IF two magnitudes have each of them a given ratio to another magnitude, both of them together shall have a given ratio to that other.

Let the magnitudes $A B, B C$ have a given ratio to the magnitude $D, A C$ has a given ratio to the same D.
Because $A B, B C$ have each of them a given ratio to D, the ratio of $A B$ to $B C$ is given ${ }^{2}$: And by composition, the ratio of AC to CB

D is given ${ }^{\text {b }}$: But the ratio of BC to D is given; therefore the ratio of $A C$ to D is given.

PROP. XII.

See N.

IF the. whole have to the whole a given ratio, and the parts have to the parts given, but not the same ratios: Every one of them, whole or part, shall have to every one a great latio.

Let the whole $A B$ have a given ratio to the whole $C D$, and the parts $A E, E B$ have given, but not the same, ratios to the parts CF, FD: Every one shall have to every one, whole or part, a given ratio.

Because the ratio of AE to CF is given, as AE to CF , so make $A B$ to $C G$; the ratio therefore of $A B$ to $C G$ is given : wherefore the ratio of the remainder EB to the remainder $F G$ is given, because it is the same ${ }^{3}$ with the ratio of $A B$ to CG : And the ratio of $E B$ to $F D$ is given, wherefore the ratio of FD to FG is given ${ }^{\text {b }}$; and, by conver sion, the ratio of KI) to DG is $\mathrm{C} \quad \mathrm{F} \quad \mathrm{G} D$ given ${ }^{\text {c }}$: And because AB has to each of the magnitudes CD, CG a given ratio, the ratio of CD to CG is given ${ }^{\mathrm{b}}$, and therefore ${ }^{\mathrm{c}}$ the ratio of CD to DG is given: But the ratio of GD to DF is given, wherefore ${ }^{\text {b }}$ the ratio of CD to DF is given, and consequently the ratio of CF to FD is given ; but the ratio of CF to AE is given, as also the ratio of FD) to EB ; wherefore ${ }^{\text {e }}$ the ratio of AE to EB is given; as also the ratio of $A B$ ta each of them ${ }^{f}$. The ratio therefore of every one to every one is given.

PROP. XIII.

See N: TF the first of three proportional straight lines has a given ratio to the third, the first shall also have a given ratio to the second.

Let A, B, C be three proportional straight lines, that is, as A to B, so is B to C; if A has to C a given ratio, A shall also have to B a given ratio.

Because the ratio of A to C is given, a ratio which is the
4. 2. def.
-13. a same with it may be found ${ }^{3}$ let this be the ratio of the given straight lines D, E; and between D and E find a^{b} mean proportional

D A T A.

proportiorial F ; therefore the rectangle contained by D and E is equal to the square of F , and the reetangle D, E is given, because its sides D, E are given; wherefore the square of F, and the straight line F is given : And because as A is to C, so is D to E; but as A to C, so is ${ }^{e}$ the square of A to the square of B; and as D to E, so is ${ }^{c}$ the square of D to the square of F : Therefore the squared of A is to the square of B, as the square of D to the square of F : As therefore ${ }^{\mathrm{c}}$ the straight line A to the straight line B, so is the straight line D to the straight line F; therefore the ratio of A to B is given ${ }^{2}$, because the ratio of the given straight lines D, F, which is the same with it, has been found.

PROP. XIV.
A.

IfF a magnitude, together with a given magnitude, see N. has a given ratio to another, magnitude; the excess of this other magnitude abore a given magnitude has a given ratio to the first magnitude: And if, the excess of a magnitude above a given magnitude has a given ratio to another macrnitude ; this other magnitude, together with a given magnitude, has a given ratio to the first magnitude.

Let the magnitude $A B$, together with the given magnitude BE , that is, AE , have a given ratio to the magnitude CD : the excess of $C D$ above a given magnitude has a given ratio to $A B$.

Because the ratio of $A E$ to $C D$ is given, as $A E$ to $C D$, so nake BE to FD ; therefore the ratio of BE to FD is given, and BE is given; wherefore FD is given ${ }^{2}$: And because as AE to $C D$, so is $B E$ to $F D$, the remainder AB is ${ }^{\mathrm{b}}$ to the remainder CF , as AE to CD : But the ratio of $A E$ to $C D$ is given; therefore the ratio of $A B$ to $C F$ is given; that is, CF the excess of CD above the given magnicude FD has a given ratio to AB .

Next, Let the excess of the magnitude $A B$ above the given magnitude BE , that is, let AE havea given ratio to the magnitude,
nitude $C D ; C D$ together with a given magnitude: has a given ratio to $A B$.

Because the ratio of $A E$ to $C D$ is given, as $A E$ to $C D$, so make BE to FD ; therefore the ratio of BE to FD is given, and BE is given
-2. dat. wherefore FD is given ${ }^{\text {a }}$: And because as $A E$ to $C D$, so is $B E$ to $F D, A B$ is to CF , as ${ }^{\mathrm{c}} \mathrm{AE}$ to CD : But the ratio
 of $A E$ to $C D$ is given, therefore the ratio of $A B$ to $C F$ is given: that is, CF which is equal to CD , together with the given magnitude DF , has a given ratio to AB .
B.

PROP. XV.
See N. IF a magnitude, together with that to which andthe magnitude has a given ratio, be given; the sum of this other, and that to which the first magnitude has a given ratio, is given.

Let $A B, C D$ be two magnitudes of which $A B$ together with BE to which CD has a given ratio, is given; CD is given together with that magnitude to which $A B$ has a given ratio.
Because the ratio of $C D$ to $B E$ is given, as $B E$ to $C D$, so make AE to FD ; therefore the ratio of AE to FD is given,
22. dat. and AE is given, wherefore a FD is given: And because as BE to
${ }^{\circ}{ }^{\circ}$ or. 19.5 CD , so is AE to $\mathrm{FD}: \mathrm{AB}$ is ${ }^{b}$ to FC , as BE to CD : And the ratio of BE to CD is given, wherefore
 the ratio of $A B$ to $F C$ is given: And FD is given, that is, $C D$ together with $F C$ to which $A B$ has a given ratio is given.
10.

PROP. XVI.
See N. IF the excess of a magnitude above a given magnitude has a given ratio to another magnitude ; the excess of both together above a given magnitude shall have to that other a given ratio: And if the excess of two magnitudes together above a given magnitude, has to one of them a given ratio; either the excess of the other above a given magnitude has to that one a given ratio; or the other is given together with the magnitude to which that one has a.given ratio.

Let the excess of the magnitude $A B$ above a given magnitude, have a given ratio to the magnitude BC ; the excess of AC, both of them together, above the given magnitude, has a given ratio to BC .

Let AD be the given magnitude, the excess of AB above which, viz. DB , has agiven ratio to BC : And because DB has a
 given ratio to $B C$, the ratio of $D C$ to $C B$ is given ${ }^{2}$, and $A D$ is given; therefore $D C$, the ex- ${ }^{27}$. dat. cess of $A C$ above the given magnitude $A D$, has a given ratio to BC.

Next, Let the excess of two magnitudes AB, BC together, above a given magnitude, have to ene of them BC a given ratio; ei-
 ther the excess of the other of them $A B$ above the given magnitude shall have to $B C$ a given ratio; or AB is given, together with the magnitude to which $B C$ has a given ratio.

Let AD be the given magnitude, and first let it be less than $A B$; and because $D C$ the excess of $A C$ above $A D$ has ${ }^{\text {a }}$ given ratio to BC, DB has ${ }^{\mathrm{b}}$ a given ratio to BC ; that is, ${ }^{\circ}$ cor. 6 . $D B$ the excess of $A B$ above the given magnitude $A D$ has a dat. given ratio to BC . .

But let the given magnitude be greater than $A B$, and make $A E$ equal to it; and because $E C$, the excess of $A C$ above $A E$ has to BC a given ratio, BC has ${ }^{5}$ a given ratio to BE ; and ${ }^{\text {c } 6 \text {. dat. }}$ because AE is given, AB together with BE to which BC has 2 given ratio is given.

PROP. XVII.

IF the excess of a magni ade above a given mag-sec N . nitude has a given ratio to another magnitude; the excess of the same first magnitude above a given magnitude, shall have a given ratio to both the magnitudes together. And if the excess of either of two magnitudes above a given magnitude has a given ratio to both magnitudes together; the excess of the same above a given magnitude shall have a given ratio to the other.

Let the excess of the magnitude $A B$ above a given magnitude have a given ratio to che magnitude BC ; the excess of $A B$ above a given magnitude has a given ratio to $A C$.

Let $A D$ be the given magnitude; and because $D B$, the excess of $A B$ above $A D$, has a given ratio to $B C$; the ratio of
b g. dat.
c 12. 5.
d 6. dat.
e 19.5.
${ }^{f}$ Cor. 6. dat.

DC to DB is given ${ }^{2}$: Make the ratio of AD to DE the same with this ratio; therefore the ratio of AD to DE is given; and
 AD is given, whereforeb DE and the remainder AE are given: And because as $D C$ to $D B$, so is $A D$ to $D F, A C$ isc to $E B$, as DC to DB ; and the ratio of DC to DB is given; wherefore the ratio of $A C$ to EB is given : And. because the ratio of EB to AC is given, and that AE is given, therefore EB the excess of $A B$ above the given magnitude $A E$, has a given ratio to AC .
Next, Let the excess of $A B$ above a given magnitude have a given ratio to $A B$ and $B C$ together, that is, to $A C$; the excess of $A B$ above a given magnitude has a given ratio to $B C$.

Let AE be the given magnitude; and because EB the excess of $A B$ above $A E$ has to $A C$ a given ratio, as $A C$ to $E B$ so make $A D$ to $D E$; therefore the ratio of $A D$ to $D E$ is given, as alsod the ratio of AD to AE : And AE is given, wherefore ${ }^{b} \mathrm{AD}$ is given: And because, as the whole AC, to the whole $E B$, so is AD to DE , the remainder DC is ${ }^{\circ}$ to the remainder DB , as AC to EB ; and the ratio of AC to EB is given; wherefore the ratio of DC to DB is given, as also the ratio of $D B$ to $B C$: And $A D$ is given; therefore $D B$, the excess of $A B$ above a given magnitude $A D$, has a given ratio to BC .

1F to each of two magnitudes, which have a given ratio to one another, a given magnitude be added; the wholes shall either have a given ratio to one another, or the excess of one of them above a given magnitude shall have a given ratio to the other.

Let the two magnitudes $A B, C D$ have a given ratio to one another, and to AB let the given magnitude BE , be added, and the given magnitude DF to CD : The wholes AE, CF either have a given ratio to one another, or the excess of one of them above a given magnitude has a given ratio to the other ${ }^{2}$.

Because BE, DF are each of them given, their ratio is given,
and if this ratio be the same with the ratio of AB to CD , the ratio of AE to CF, which is the same b with the given ratio of $A B$ to $C D$, shall be

$\mathrm{CD}^{-10.5}$. given.

But if the ratio of BE to DF be not the same with the ratio of $A B$ to $C D$, either it is greater than the ratio of $A B$ to CD , or, by inversion, the ratio of DF to BE is greater than the ratio of $C D$ to $A B$: First, let the ratio of BE to DF be greater than the ratio of $A B$ to $C D$; and as $A B$ to $C D$, so make $B G$ to $D F$; therefore the ratio of $B G$ to $D F$ is
 given; and DF is given, therefore ${ }^{c} \mathrm{BG}$ is given: And c_{2}. dat. because $B E$ has a greater ratio to $D F$ than ($A B$ to $C D$, that is, than) $B G$ to $D{ }^{5}$, he is greater ${ }^{d}$ than $B G$: And because as ${ }^{d}{ }^{d} 10.5$. $A B$ to $C D$, so is $B G$ to $D F$; therefore $A G$ is ${ }^{b}$ to $C F$, as $A B$ to $C D$: But the ratio of $A B$ to $C D$ is given, wherefore the ratio of AG to CF is given; and because BE, BG are each of them given, GE is given: Therefore AG, the excess of $A E$ above a given magnitude GE, has a given ratio to CF. The other case is demonstrated in the same manner,

> PROP. XIX.

IF from each of two magnitudes, which have a given ratio to one another, a given magnitude be taken, the remainders shall either have a given ratio to one another, or the excess of one of them above a given magnitude, shall have a given ratio to the other.

Let the magnitudes $A B, C D$ have a given ratio to one another, and from $-A B$ let the given magnitude $A E$ be taken, and from $C D$ the given magnitudes CF : The remainders $E B$, FD shall either have a given ratio to one another, or the excess of one of them above 2 given magnitude shall have a given ratio to the other.

Because AE, CF are each of C I D them given, their ratio is given ${ }^{2}$; and if this ratio be the same with the ratio of $A B$ to 2_{1}, dat Bb $2 \ldots \mathrm{CD}$,

E U C L I D'S

CD , the ratio of the remainder EB to the remainder FD ,
-19. 3. which is the same ${ }^{\text {h }}$ with the given ratio of $A B$ to $C D$, shall be given.

But if the ratio of $A B$ to $C D$ be not the same with the ratio of AE to CF , either it is greater than the ratio of AE to CF , or, by inversion, the ratio of CD to AB is greater than the ratio of CE to $A E$: First, let the ratio of $A B$ to $C D$ be greater than the ratio of $A E$ to $C F$, and as $A B$ to $C D$, so make AG to CF : therefore the ratio of AG to CF is given, and given: And because the ratio of

$A G$ to $C F$, is greater than the ratio of $A E$ to $C F ; A G$ is greater ${ }^{d}$ than $A E$: and $A G, A E$ are given, therefore the remainder EG is given; and as $A B$ to $C D$, so is $A G$ to $C F$, and so is ${ }^{\text {b }}$ the remainder GB to the remainder FD; and the ratio of $A B$ to $C D$ is given : Wherefore the ratio of $G B$ to FD is given ; therefore GB, the excess of EB above a given magnitude EG, has a given ratio to FD. In the same manner the other case is demonstrated.
16.

PROP. XX.

IF to one of two magnitudes which have a given ratio to one another, a given magnitude be added, and from the other a given magnitude be taken; the excess of the sum above a given magnitude shall have a given ratio to the remainder.

Let the two magnitudes $A B, C D$ have a given ratio to one another, and to $A B$ let the given magnitude EA be added, and from CD let the given magnitude CF bè taken; the excess of the sum EB above a given magnitude has a given ratio to the remainder $F D$.

Because the ratio of $A B$ to $C D$ is given, make as $A B$ to $C D$, so $A G$ to CF: Therefore the ratio of $A G$ to CF is given, and CF is given, wherefore, $A G$ is given : and EA is given, therefore the whole EG is given: And because as $A B$ to $C D$, so is $A G$ to CF , and so is ${ }^{\mathrm{b}}$ the remainder

> D A T A.
above the given magnitude EG, has a given ratio to the remainder FD.

> PROP. XXI.
C.

\mathbf{I}_{F}F two magnitudes have a given ratio to one ano- See N : ther, if a given magnitude be added to one of them, and the other be taken from a given magnitude; the sum, together with the magnitude to which the remainder has a given ratio, is given: And the remainder is given together with the magnitude to which the sum has a given ratio.

Let the two magnitudes $A B, C D$ have 2 given ratio to one another; and to AB let the given magnitude BE be added, and let $C D$ be taken from the given magnitude FD: The sum $A E$ is given together with the magnitude to which the remainder FC has a given ratio.

Because the ratio of $A B$ to $C D$ is given, make as $A B$ to $C D$, so GB to FD: Therefore the ratio of GB to FD is given, and FD is given, wherefore GB is given ${ }^{2}$; and BE is given, the G A $\quad \mathrm{B} \quad \mathrm{E}$. 2.dat whole GE is therefore given, and because as $A B$ to $C D$, so is GB to FD , and so is ${ }^{\circ} \mathrm{GA}$ to FC ; the
 ratio of GA to FC is given: And AE together with GA is given, because GE is given; therefore the sum $A E$, together with GA, to which the remainder FC has a given ratio, is given. The second part is manifest from Prop. 15.

PROP. XXII.
D.

IF two magnitudes have a given ratio to one ano- See N . ther, if from one of them a given magnitude be taken, and the other be taken from a given magnitude; each of the remainders is given together with the magnitude to which the other remainder has a given ratio.

Let the two magnitudes AB, CD have a given ratio to one another, and from $A B$ let the given magnitude $A E$ be taken,

E U C LID'S

and let CD be taken from the given magnitude CF : The remainder EB is given together with the magnitude to which the other remainder DF has a given ratio.

Because the ratio of $A B$ to $C D$ is given, make as $A B$ to $C D$, so $A G$ to $C F$: The ratio of $A G$ to $C F$ is therefore given,
b 19.5. and CF is given, wherefore ${ }^{2}$ AG is given ; and AE is given, and therefore the remainder $E G$ is given: And because as $A B$ to $C \quad$ I \quad I $C D$, so is AG to CF: And so is the remainder $B G$ to the remainder $D F$; the ratio of $B G$ to DF is given: And EB together with BG is given, because EG is given: Therefore the remainder EB, together with BG , to which DF the other remainder has a given ratio, is given. The second part is plain from this and Prop. 15.'
20.

See N,

- 19.5.
b 2. dat.

PROP. XXIII.

IF from two given magnitudes there be taken magnitudes which have a given ratio to one another, the remainders shall either have a given ratio to one another, or the excess of one of them above a given magnitude shall have a given ratio to the other.

Let $A B, C D$ be two given magnitudes, and from them let the magnitudes AE, CF, which have a given ratio to one another, be taken; the remainders EB, FD either have a given ratio to one another, or the excess of one of them above a given magnitude has a given ratio to the other'.

Because AB, CD are each of them given, the ratio of $A B$ to CD is given: And if this ratio be the same with the ratio of AE to CF , then the remainder EB

has ${ }^{2}$ the same given ratio to the remainder FD.
But if the ratio of $A B$ to $C D$ be not the same with the ratio of AE to CF , it is either greater than it, or, by inversion, the ratio of CD to AB is-greater than the ratio of CF to AE : First, let the ratio of $A B$ to $C D$ be greater than the ratio of $A E$ to $C F$; and as $A E$ to $C F$, so make $A G$ to $C D$: therefore the ratio of $A G$ to $C D$ is given, because the ratio of AE to CF is given; and CD is given, wherefore ${ }^{b} \mathrm{AG}$ is

D A T A.
given ; and because the ratio of AB to CD is greater than the ratio of (AE to CF, that is, than the ratio of AG to CD ; $A B$ is greater ${ }^{c}$ than $A G$: And $A B, A G$ are given; therefore the remainder BG

is given: And because as $A E$ to $C F$, so is $A G$ to $C D$, and so is ${ }^{2}$ EG to $F D$; the ratio of EG to FD is given: And $G B^{2}$ 19.5. is given ; therefore EG, the excess of EB above a given magnitude GB, has a given ratio to FD. The other case is shewn in the same way.

PROP. XXIV.

IF there be three magnitudes, the first of which has See N . a given ratio to the second, and the excess of the second above a given magnitude has a given ratio to the third; the excess of the first above a given magnitude shall also have a given ratio to the third.

Let $A B, C D, E$, be the three magnitudes of which $A B$ has a given ratio to $C D$; and the excess of $C D$ above a given magnitude has a given ratio to E : The excess of AB above a given magnitude has a given ratio to E .

Let $C F$ be the given magnitude, the excess of $C D$ above which, viz. FD, has a given ratio to K : And because the ratio of $A B$ to $C D$ is given, as $A B$ to $C D$, so make AG to CF ; therefore the ratio of AG to CF A is given: And CF is given, wherefore ${ }^{2} A G$ is given: And because as $A B$ to $C D$, so is $A G$ to $C F$, and so is ${ }^{\circ}$ GB to $F D$; the ratio of GB to FD is given. And the ratio of FD to E is given, wherefore ${ }^{c}$ the ratio of GB to E is given, and $A G$ is given; therefore $G B$ the excess of $A B$ above a given magnitude $A G$ has a given ratio to E .

COR. I. And if the first has a given ratio to the second, and the excess of the first above a given magnitude has a given ratio to the third ; the excess of the second above a given magnitude shall have a given ratio to the third. For, if the second be called the first, and the first the second, this corollary will be the same with the proposition.

Cor.

E U C L I D'S

Cor. 2. Also, if the first has a given ratio to the second, and the excess of a third above a given magnitude has also a given ratio to the second, the same excess shall have a given ratio to the first ; as is evident from the gth dat.
17.

PROP. XXV.

IF there be three magnitudes, the excess of the first whereof above a given magnitude has a given ratio to the second; and the excess of a third above a given magnitude has a given ratio to the same second: The first shall either have a given ratio to the third, or the excess of one of them above a given magnitude shall have a given ratio to the other.
Let $\mathrm{AB}, \mathrm{C}, \mathrm{DE}$ be three magnitudes, and iet the excesses of each of the two $A B, D F$, above given magnitudes have given ratios to $\mathrm{C} ; \mathrm{AB}, \mathrm{DE}$ either have a given ratio to one another, or the excess of pne of them above a given magnitude has a given ratio to the other.

Let $F B$ the excess of $A B$ above the given magnitude $A F$ have a given ratio to C ; and let GE the excess of DE above the given magnitude DG have a given ratio to C ; and because FB, GE have each of them a given ratio to C, they have a given ratio to one another. But to FB, GE the given magnitudes AF, DG are added; therefore ${ }^{b}$ the whole magnitudes $A B$, DE have either a given ratio to one another, or the excess of one of them above a given
 magnitude has a given ratio to the other.

PROP, XXVI.

IF there be three magnitudes, the excesses of one of which above given magnitudes have given ratios to the other two magnitudes; these two shall either have a given ratio to one another, or the excess of one of them above a given magnitude shall have a given ratio to the other.

> D A T A.

Let $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}$ be three magnitudes, and let GD the excess of one of them CD above the given magnitude CG have a given ratio to AB ; and also let KD the excess of the same CD above the given magnitude CK have a given ratio to EF , either AB has a given ratio to EF , or the excess of one of them above a given magnitude has a given ratio to the other.
Because GD has a given ratio to $A B$, as $G D$ to $A B$, so make CG to HA ; therefore the ratio of CG to HA is given ; and CG is given, wherefore ${ }^{2} \mathrm{HA}$ is given: - And because as 2 . dat. GD to $A B$, so is CG to HA, and so is ${ }^{\mathrm{b}} \mathrm{CD}$ to HB ; the ratio . 12. 5. of $C D$ to HB is given: Also because KD has a given ratio to EF, as KD to EF, so make CK to LE; therefore the ratio of CK to LE is given; and CK is given, wherefore LE^{2} is given: And because as KD to EF , so is CK to LE , and so ${ }^{\text {b }}$ is CD to LF; the ratio of CD to LF is given: But the ratio of CD to HB is given, whereforec the ratio of HB to LF is given: and from HB, LF the given magnitudes HA LE being taken, the remainders $A B, E F$ shall
 either have a given ratio to one another, or the excess of one of them above a given magnitude has a given ratio to the otherd $\&$ 19. dat.

Another Demonstration.

Let $\mathrm{AB}, \mathrm{C}, \mathrm{DE}$ be three magnitudes, and let the excesses of one of them C above given magnitudes have given ratios to $A B$ and $D E$; either $A B, D E$ have a given ratio to one another, or the excess of one of them above a given magnitude has a given ratio to the other.

Because the excess of C above a given magnitude has a given ratio to $A B$; therefore ${ }^{2} A B$ together with a given mag- ${ }^{-14 . ~ d a t o . ~}$ nitude has a given ratio to C : Let this given magnitude be AF , wherefore FB has a given ratio to C : Also because the excess of C above a given magnitude has a given ratio to DE; therefore ${ }^{2}$ DE together with a given magnitude has a given ratio to C : Let this given magnitude be DG, wherefore GE has a given
 ratio to C : And $F B$ has a given ratio to C, thereforeb the ratio 9 . dat. of FB to GE is given: And from FB, GE the given magnitudes AF, DG being taken, the remainders AB, DE either have a given ratio to one another, or the excess of one of them above a given magnitude has a given ratio to the otherc. © 19. dat.

EU.CLI D'S

19.

PROP. XXVII.

I1 F there be three magnitudes, the excess of the first of which above a given magnitude has a given ratio to the second; and the excess of the second above a given magnitude has also a given ratio to the third: The excess of the first above a given magnitude shall have a given ratio to the third.

Let $A B, C D, E$ be three magnitudes, the excess of the first of which $A B$ above the given magnitude $A G$, viz. $G B$, has a given ratio to CD ; and FD the excess of CD above the given magnitude CF, has a given ratio to E : the excess of AB above a given magnitude has a given ratio to E.

Because the ratio of $G B$ to $C D$ is given, as $G B$ to $C D$, so make GH to CF ; therefore the ratio of GH
22. dat. to CF is given ; and CF is given, wherefore ${ }^{2}$ GH is given; and AG is given, wherefore the whole AH is given: And because as GB
-19.5. to CD, so is GH to CF, and so is ${ }^{b}$ the remainder HB to the remainder FD ; the ratio of HB to FD is given: And the ratio of FD to E is given, wherefore ${ }^{c}$ the ratio of $H B$ to
 E is given.: And AH is given ; therefore HB the excess of $A B$ above a given magnitude $A H$ has a given ratio to E .

"Otherwise,

Let $A B, C, D$ be three magnitudes, the excess $E B$ of the first of which $A B$ above the given magnitude $A E$ has a given ratio to C , and the excess of C above a given magnitude has a given ratio to D : The excess of $A B$ above a given magnitude has a given ratio to D .

Because EB has a given ratio to C, and the excess of C above a given magnitude has a given ratio to D; therefore ${ }^{d}$ the excess of EB above a given magnitude has a given ratio to D : Let this given magnitude be EF; therefore
 FB the excess, of EB above EF has a given ratio to D : And AF is given, because AE, EF
D AT A.
are given: Therefore $F B$ the excess of $A B$ above a given magnitude AF has a given ratio to D."

PROP. XXVIII.

I
F two lines given in position cut one another, the See N. point or points in which they cut one another are given.
Let two lines $A B, C D$, given in position, cut one another in the point E ; the point E is given.
Because the lines $A B, C D$ are given in position, they have always the same situation ${ }^{2}$; and therefore the point, or points, in which they cut one another have always the same situation: And because the lines AB, CD can be found ', the point, or points, in which they cut one another, are likewise found; and therefore are
 given ir position ${ }^{2}$.

PROP. XXIX.

96.

IF the extremities of a straight line be given in position ; the straight line is given in position and magnitude.

Because the extremities of the straight line are given, they can be found ${ }^{2}$: Let these be the points, A, B, between which ${ }^{2} 4$ def. a straight line $A B$ can be drawn ${ }^{\text {b }}$; this has an invariable position, because between two given points there can
 late. between wo given points line can be drawn but one straight line : And when the straight line AB is drawn, its magnitude is at the same time exhibited, or given: Therefore the straight line AB is given in positionand.magnitude.

EUCLID's

IFF one of the extremities of a straight line given in position and magnitude be given; the other extremity shall also be given.

Let the point A be given, to wit, one of the extremities of a straight line given in magnitude, and which lies in the straight line $A C$ given in position; the other extremity is also given.

Because the straight line is given in magnitude, one equal to it can be found ${ }^{2}$; let this be the straight line D : From the greater straight line $A C$ cut off $A B$ equal to the lesser D: Therefore the
 other extremity B of the straight line $A B$ is found: And the point B has D always the same situation; because any other point in $A C$, upon the same side of A, cuts off between it and the point A a greater or less straight line than $A B$, that is, than D : Therefore the point B is given ${ }^{\text {b }}$: And it is plain another such point can be found in AC, produced upon the other side of the point A.

I_{F}F a straight line be drawn through a given point parallel to a straight line given in position ; that straight line is given in position.

Let A be a given point, and BC a straight line given in position ; the straight line drawn through A parallel to $B C$ is given in position.
-31. 1.
Through A draw ${ }^{2}$ the straight line
DAE parallel to BC ; the straight D
A T line DAE has always the same position, because no other straight line B can be drawn through A parallel to BC: Therefore the straight line DAE which has been found is given ${ }^{\text {b }}$ in position.

IF a straight line be drawn to a given point in a straight line given in position, and makes a given angle with it; that straight line is given in position.
Let AB be a straight line given in position, and Ca given point in it, the straight line drawn to C , which makes a given angle with CB , is given in position.

Because the angle is given, one equal to it can be found ${ }^{2}$; let this be the angle at D , at the given point C , in the given straight line $A B$, make ${ }^{b}$ the angle ECB equal to the angle at D : Therefore the straight line EC has always the same situation, because
 any other straight line FC, drawn to the point C , makes with CB a greater or less angle than the angle ECB, or the angle at D : Therefore the straight line EC, which has been found, is given in position.

It is to be observed, that there are two straight lines EC, GC upon one side of AB that make equal angles with it, and which make equal angles with it when produced to the other side.

PROP. XXXIII.

IF a straight line be drawn from a given point to a straight line given in position, and makes a given angle with it, that straight line is given in position.
From the given point A let the straight line AD be drawn to the straight line BC given in position, and make with it a given angle $A D C: A D$ is given in position.

Through the point A draw ${ }^{\text {a }}$ the straight line EAF parallel to BC ; and because through the given point A the straight line EAF is drawn parallel to
 $B C$, which is given in position, EAF is therefore given in position ${ }^{\text {b }}$: And because the straight line AD meets the parallels b 31 . dat.
BC, EF, the angle is EAD equalc to the angle ADC ; and ADC is given, wherefore also the angle EAD is given: Therefore, because the staaight line DA is drawn to the given point A in the straight line EF given in position, and makes with it a given angle $\mathrm{EAD}, \mathrm{AD}$ is given ${ }^{\mathrm{d}}$ in position.

PROP. XXXIV.

See N. IF from a given point to a straight line given in position, a straight line be drawn which is given in magnitude; the same is also given in position.

Let A be a given point, and BC a straight line given in position, a straight line given in magnitude, drawn from the point A to $B C$ is given in position.

Because the straight line is given in magnitude, one equal to
${ }^{2}$ 1. def. it can be found ${ }^{2}$; let this be the straight line $\mathrm{D}:$ From the point A draw AE perpendicular to BC : and because AE is the shortest of all the straightlines which can be drawn from the point A to $B C$, the straight line D, to which one equal is to be drawn from the point A to BC , cannot be less than AE .
 If therefore D be equal to AE, AE is the straight line given in magnitude drawn from the given point A to BC : And it
-33. dat. is evident that AE is given in position ${ }^{\text {b }}$, because it is drawn from the given point A to $B C$, which is given in position, and makes with. BC the given angle AEC.

But if the straight line D be not equal to $A E$, it must be greater than it: Produce AE, and make AF equal to D ; and from the centre A, at the distance $A F$, describe the circle GFH, and join AG, AH: Because the circle GFH is given given; wherefore $A G$ is given in positione, that is, the straight line $A G$ given in magnitude, (for it is equal to D) and drawn
 from the given point A to the straight line BC given in position, is also given in position : And in like manner AH is given in position: Therefore in this case therearetwo straight
lines $A G, A H$ of the same given magnitude which can be draw ${ }^{n}$ from a given point A to a straight line $B C$ given in position.

PROP. XXXV.

IF a straight line be drawn between two parallel straight lines given in position, and makes given angles with them, the straight line is given in magnitude.

Let the straight line EF be drawn between the parallels $A B, C D$, which are given in position, and make the given angles $\mathrm{BEF}, \mathrm{EFD}: \mathrm{EF}$ is given in magnitude.

In $C D$ take the given point G, and through G draw GH^{2} 31. I. parallel to EF: And because CD meets the parallels GH, EF, the angle EFD is equal ${ }^{\text {b }}$ to the angle HGD: And EFD is a given angle; wherefore the angle HGD is given : and because HG is drawn to the given point G, in the straight line $C D$, given in position, and makes a given angle
 HGD ; the straight line HG is given in positionc : And AB is given in position : therefore the e 32. point H is givend ; and the point G is also given, wherefore $d \rho s$. dat. GH is given in magnitudee : And EF is equal to it, therefore e $29 . \mathrm{dat}^{\mathrm{e}}$. EF is given in magnitude.

PROP. XXXVI.

IF a straight line given in magnitude be drawn See N . between two parallel straight lines given in position, it shall make given angles with the parallels.

Let the straight line EF given in magnitude be drawn between the parallel straight lines $A B, C D$, which are given in position: The angles $\mathrm{AEF}, \mathrm{EFC}$ shall be given.

Because EF is given in magnitude, a straight line equal to it can be found ${ }^{2}$: Let this be G : In AB take a given point H , and from it draw ${ }^{\mathrm{b}} \mathrm{HK}$ perpendicular to $C D$: Therefore the straight line G,

E U C LID'S

that is, EF cannot be less than HK: And if G be equal to HK, EF also is equal to it; wherefore EF is at right angles to CD; for if it be not, EF would be greater than HK, which is absurd. Therefore the angle EFD is a right, and consequently a given angle.

But if the straight line \mathbf{G} be not equal to HK , it must be greater than it : Produce HK, and take HL, equal to G; and from the centre H , at the distance HL, describe the circle
\& A.def. tion : Of the straight lines
-6. def.
42. dat.
e29. dat.
©34. 1.

- 29.1.
* 1. def. MLN, and join HM, HN : And because the circlec MLN, and the straight line $C D$, are given in position, the points M, N are ${ }^{d}$ given: And the point H is given, wherefore the straight lines HM, HN, are given in positione: And CD is given in position; therefore the angles HMN,
 HNM, are given in posiG HM, HN, let. HN be that which is not parallel to EF, for EF cannot be parallel to both of them ; and draw EO parallel to HN : EO therefore is equale to HN , that is, to G ; and EF is equal to G ; wherefore EO is equal to EF , and the angle EFO to the angle EOF, that ish, to the given angle HNM, and because the angle HNM, which is equal to the angle EFO, or EFD, has been found; therefore the angle EFD, that is, the angle AEF, is given in magnitude ${ }^{k}$: and consequently the angle EFC.
E.

PROP. XXXVII.

See N. : IF a straight line given in magnitude be drawn from a point to a straight line given in position, in a given angle; the straight line drawn through that point parallel to the straight line given in position, is given in position.

Let the straight line AD given in magnitude be drawn from the point A to the straight line $B C$ given in position, in the given angle ADC : the straight line EAF drawn through A parallel to BC is given in position.

In BC take a given point G , and draw GH parallel to AD: . And because HG is drawn
 to a given point G in the straight line $B C$
given in position, in a given angle HGC, for it is equal ${ }^{2}$ to ${ }^{12} 29.1$. the given angle ADC ; HG is given in position ${ }^{\text {: }}$: But it is ${ }^{\circ} 32$. dat. given also in magnitude, because it is equal to ${ }^{\circ} \mathrm{AD}$, which is c $35.1 .$. given in magnitude ; therefore because G, one of the extremities of the straight line GH given in position and magnitude is given, the other extremity H is given ${ }^{\text {d }}$; and the straight d 30 . dat. line EAF; which is drawn through the given point H parallel to BC given in position, is therefore given in position. e31. dat.

PROP. XXXVIII.

IFa straight line be drawn from a given point to two parallel straight limes given in position, the ratio of the segments between the given point and the parallels shall be given.

Let the straight line EFG be drawn from the given point E to the parallels $A B, C D$, the ratio of EF to $E G$ is given.

From the point E draw EHK perpendicular to CD; and because from a given point E the straight line EK is drawn to $C D$ which is given in position, in a given angle EKC; EK is

given in position ${ }^{2}$; and $A B, C D$ are given in position ; there- ${ }^{2} 33$. dos. fore ${ }^{b}$ the points H, K are given: And the point E is given; $023 . \mathrm{dz}$:wherefore ${ }^{c} \mathrm{EH}, \mathrm{EK}$ are given in magnitude, and the ratio of $\mathrm{c}_{\text {2 }}$. dat. them is therefore given. But as $E H$ to $E K$, so is $E F$ to $E G$, ${ }^{19}$. dat. because $A B, C D$ are parallels; therefore the ratio of EF to EG is given.

> PROP. XXXIX.

35, 30.
F the ratio of the segments of a straight line be-sees. tween a given point in it and two parallel straight lines, be given, if one of the parallels be given ir position, the other is also given in position.

From the given point A, let the straight line AED be drawn to the two parallel straight lines FG, BC, and let the ratio of the segments AE, AD be given; if one of the parallels BC be given in position, the other $F G$ is also given in position.

From the point A^{\prime} draw AH perpendicular to BC , and let it meet FG in K ; and because AH is drawn from the given point A to the straight line BC given in position, and makes a

a33. dat. given angle AHD; AH is given ${ }^{2}$ in position; and BC is likewise given in position, therefore the point H is given ${ }^{\text {b }}$: The point A is also given; wherefore AH is given in magnituder, and, because FG, BC are parallels, as $A E$ to $A D$, so is $A K$ to AH ; and the ratio of AE to AD
 is given, wherefore the ratio of AK to AH is given ; but AH and it is also given in position, and the point A is given; wherefore ${ }^{c}$ the point K is given. And because the straight line FG is drawn through the given point K parallel to BC

> 31. dat.

57, 38. which is given in position, therefore ${ }^{t} \mathrm{FG}$ is given in position.

See N.

I
PROP. Xt. F the ratio of the segments of a straight line into which it is cut by three parallel straight lines, be given ; if two of the parallels are given in position, the third is also given in position.

Let $\mathrm{AB}, \mathrm{CD}, \mathrm{HK}$ be three parallel straight lines, of which Al, CD are given in position; and let the ratio of the eeg-
D A T A.
ments GE, GF into which the straight line GEF is cut by the three parallels, be given; the third parallel HK is given in position.

In $A B$ take a given point L, and draw $L M$ perpendicular to CD , meeting HK in N ; because LM is drawn from the given point L to $C D$ which is given in position; and makes a given angle LMD; LM is given in position ${ }^{2}$; and $C D$ is ${ }^{2} 83 . d 2$.. given in position, wherefore the point M is given $^{\circ}$; and the ${ }^{\circ} \stackrel{28 . d z s .0^{\circ}}{ }$ point L is given, LM is therefore given in magnitude ${ }^{c}$; and cog . dat. because the ratio of GE to GF is given, and as GE' to GF, so

is NL to NM ; the ratio of NL to NMI is given; and therefored d $\left\{\begin{array}{l}\text { Cor. } \\ 6, \text { or } \\ 7 \text { das. }\end{array}\right.$ the ratio of ML to LN is given; but LM is given in magnituded, whereforec $L M$ is given in magnitude: And it is also e 2 dat. given in position, and the point L is given, whereforef the ${ }^{f} 30$. das. point N is given, and because the straight line HK is drawn through the given point N parallel to $C D$, which is given in position, therefore HK is given in positions.

- Si da:-

PROP. XLI. F.

IF a straight line meets three parallel straight lines see N. which are given in position, the segments into which they cut it have a given ratio.

Let the parallel straight lines $A B, C D, E F$ given in position, be cut by the straight line GHK; the ratio of GH to HK is given.

In AB take a given point: L, and draw LM perpendicular to $C D$, meeting EF in N ; therefore ${ }^{2} \mathrm{LiM}$ is given in position; and CD, EF are given in position, wherefore the points M , Nare given: And the point Lisgiven; therefore ${ }^{\text {b }}$ the straight lines LM, MN ${ }^{-}$ are given in magnitude ; and the ratio C c 2

of LM to MN is therefore given ${ }^{\text {c }}$ But as LM to MN , so is GH to HK ; wherefore the ratio of GH to HK is given.
39. PROP. XLII.

See X . IF each of the sides of a triangle be given in magnitude, the triangle is given in species.

Let each of the sides of the triangle ABC be given in magnitude, the triangle $A B C$ is given in species.
-22.1.
Make a trianglea DEF , the sides of which are equal, each to each, to the given straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$, which can be done; because any two of them must be greater than the third; and let DE be equal to AB, EF, to BC , and FD to CA; and because the two sides ED , DF are equal to the two BA, AC, each to each, and the base EF equal to
 the base BC ; the angle
is. 1. EDF is equal to the angle BAC ; therefore, because the angle EDF, which is equal to the angle BAC, has been found, the angle BAC is giver ${ }^{c}$, in like manner the angles at B, C, are given. And because the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ are given; -1. dat. their ratios to one another are given ${ }^{\text {d }}$, therefore the triangle - 3 . def. $\quad \mathrm{ABC}$ is given in species.

IF each of the angles of a triangle be given in magnitude, the triangle is given in species.

Let each of the angles of the triangle ABC be given in magnitude, the triangle $A B C$ is given in species.

Takeastraightline DE givenin position and magnitude, and at the points D, E make ${ }^{2}$ the angle EDF equal to the angle BAC , and the angle DEF equal to ABC ; therefore the other angles $\mathrm{EFD}, \mathrm{BCA}$
 are equal, and each of the angles at the points A, B, C, is
given, wherefore each of those at the points D, E, F is given: And because the straight line FD is drawn to the given point
D in DE which is given in position, making the given angle ${ }^{\circ}$
EDF; therefore DF is given in position ${ }^{\text {b }}$. In like manner b 32 dat.
EF also is given in position; wherefore the point F is given : And the points D, E are given; therefore each of the straight lines $D E, E F, E D$ is givenc in magnitude; wherefore the c 29. dat. triangle DEF is given in speciesd : and it is similare to the ${ }^{42}$.dat. triangle $A B C$; which therefore is given in species.

PROP. XLIV.

IF one of the angles of a triangle be given, and if the sides about it have a given ratio to one another; the triangle is given in species.

Let the triangle $A B C$ have one of its angles $B A C$ given, and let the sides $B A, A C$ about it have a given ratio to one another; the triangle $A B C$ is given in species.

Take a straight line DE given in position and magnitude, and at the point D , in the given straight line DE , make the angle EDF equal to the given angle BAC ; wherefore the angle EDF is given; and because the straight line FD is drawn to the given point D in $E D$ which is given in position, making the given angle EDF; therefore FD is given in position ${ }^{2}$. And because the ratio of BA to AC is given, make the ratio of ED to DF the same with it, and join EF; and because the ratio of ED to DF
 is given, and ED is given, therefore ${ }^{b}$ DF is given in magni- $\%$. dus. tude : and it is given also in position, and the point $D_{1 s}$ given, wherefore the point F is given ${ }^{c}$: and the points D, E are ${ }^{\mathrm{c}} 30$. dato given, wherefore $\mathrm{DE}, \mathrm{EF}, \mathrm{FD}$ are given ${ }^{d}$ in magnitude : ${ }^{d} 99$ dat. and the triangle DEF is therefore given in species; and be- e $42 . \mathrm{d} 3$. cause the triangles $\mathrm{ABC}, \mathrm{DEF}$ have one angle BAC equal to one angle EDF, and the sides about these angles proportionals; the triangles aref similar; but the triangle DEF is given in ${ }^{f} 6.6$. species, and therefore also the triangle ABC.

Seen. IF the sides of a triangle have to one another given ratios; the triangle is given in species.

Let the sides of the triangle $A B C$ have given ratios to one another, the triangle $A B C$ is given in species.

Take a straight line D given in magnitude ; and because the ratio of $A B$ to $B C$ is given, make the ratio of D to E the same with it; and D is given, therefore ${ }^{2} E$ is given. And because the ratio of BC to CA is given, to this make the ratio of E to F the same ; and E is given, and therefore ${ }^{2} F$. And because as $A B$ to $B C$, so is D to E; by composition $A B$ and $B C$ together are to $B C$, as D and E to E ; but as BC to CA, so is E to F ; therefore, ex -22.5. xqualib, as $A B$ and $B C$ are to $C A$, so are D and E to F, and
c20.1. AB and BC are greater ${ }^{c}$ than CA^{\prime}; therefore D and E are
©A.5. greater than F. In the same manner any two of the three D E, F are greater than the third.

Make e the triangle GHK whose sides are equal to D, E, F, so that GH be equal to D. HK to E , and KG to F ; and because $\mathrm{D}, \mathrm{E}, \mathrm{F}$, are, each of them, given, therefore GH, HK, KG are each of them given in magnitude ; therefore the triangle GHK is given ${ }^{\text {f }}$ in species: But as $A B$ to $B C$, so is (D to E , that is) GH to HK; and as $B C$ to $C A$, so is (E to F, that is) HK to $K G$; therefore, ex æquali, as AB to AC , so is GH to GK. Where-

E 5. 6.

e 22.1 .
\& 42. dat. foreg the triangle ABC is equiangular and similar to the triangle GHK; and the triangle GHK is given in species; therefore also, the triangle $A B C$ is given in species.

Cor. If a triangle is required to be made, the sides of which shall have the same ratios which three given straight lines D, E, F have to one another; it is necessary that every two of them be greater than the third.

> D A T A.

PROP. XLVI.

43.

IF the sides of a right angled triangle about one of the acute angles have a given ratio to one another; the triangle is given in species.

Let the sides $A B, B C$ about the acute angle $A B C$ of the triangle $A B C$, which has a right angle at A, have a given ratio to one another; the triangle $A B C$ is given in species.

Take a straight line DE given in position and magnitude; and because the ratio of AB to BC is given, make as AB to BC , so DE to EF ; and because DE has a given ratio to EF , and DE is given, therefore ${ }^{2} \mathrm{EF}$ is given; and because as $\mathrm{AB}{ }^{2} 2$. dat. to BC , so is DE to EF ; and AB is less ${ }^{\mathrm{b}}$ than BC , therefore ${ }_{\mathrm{b}}$ 19.1. DE is less ${ }^{c}$ than EF. From the point D draw DG at right an- cA.5. gles to $D E$, and from the centre E , af the distance EF, describe a circle which shall meet DG in two points; let G be either of them, and join EG; therefore the circumference of the circle is
 given ${ }^{d}$ in position; and the straight line DG is given e in ${ }^{6}$. def, position, because it is drawn to the given point D in DE given ${ }^{\text {e }}$ 32. dat. in position, in a given angle ; thereforef the point G is given, $\mathrm{f} 28 . \mathrm{dat}$. and the points D, E are given, wherefore DE, EG, GD are 829 . da: givens in magnitude, and the triangle DEG in speciesh. ${ }^{5}$ 42. do.. And because the triangles ABC, DEG have the angle BAC equal to the angle $E D G$, and the sides about the angles $A B C$, DEG proportionals, and each of the other angles $\mathrm{BC} A, \mathrm{EGD}$ less than a right angle ; the triangle ABC is equiangular ${ }^{\mathrm{i}}$ and $\mathrm{i} \%$. ©.. similar to the triangle DEG; but DEG is given in species; therefore the triangle $A B C$ is given in species: And in the same manner, the triangle made by drawing a straight line from F, to the other point in which the circle meets $D G$ is given is species.

$$
\mathrm{Cc} 4
$$

EUCLID'S

PROP. XLVII:

See N .
IF a triangle has one of its angles which is not a right angle given, and if the sides about another angle have a given ratio to one another; the triangle is given in species.

* Let the triangle $A B C$ have one of its angles $A B C$ a given, but not a right angle, and let the sides $B A, A C$ about another angle BAC have a given ratio to one another; the triangle $A B C$ is given in species.

First, Let the given ratio be the ratio of equality, that is, let the sides BA, AC, and consequently the angles $\mathrm{ABC}, \mathrm{ACB}$, be
:32. 1.
b43. dat.
t32. dat. equal ; and beeause the angle $A B C$ is given, the angle $A C B$, and also the remaining angle $B A C$ is given; therefore the triangle $A B C$ is given ${ }^{\text {b }}$ in species; and it is evident that in this
 case the given angle ABC must be acute.

- Next, Let the given ratio be the ratio of a less to a greater, that is, let the side AB adjacent to the given angle be less than the side AC: Take a straight line DE given in position and magnitude, and make the angle DEF equal to the given angle ABC ; therefore EF is given ${ }^{\mathrm{c}}$ in position; and because the ratio of BA to AC is given, as BA to AC , so make ED to DG; and because the ratio of ED to DG is given, and ED is given, the straight line DG is givend, and BA is less than $A C$, therefore $E D$ is less ${ }^{e}$ than DG. From the centre D, at the distance DG, describe the circle GE, meeting EF in F, and join DF; and because the circle is given ${ }^{\text {f }}$ in position, as also the straight line EF, the point F is given s; and the points D, E are given; wherefore the straight lines, $D E, E F, F D$ are given ${ }^{h}$ in magnitude, and the triangle DEF in species ${ }^{\text {i }}$. And because BA is less than $A C$, the angle $A C B$ is lessk than the angle $A B C$, and therefore ACB is less than a right angle. In the same
manner, because-ED is less than DG or DF, the angle DFE is less than a right angle: And because the triangles ABC , $D E F$ have the angle $A B C$ equal to the angle $D E F$, and the sides about the angles BAC, EDF proportionals, and each of the other angles ACB, DFE less than a right angle ; the triangles $A B C, D E F$ are m similar, and DEF is given in spe- $\pi \% .6$. cies, wherefore the triangle $A B C$ is also given in species.

Thirdly, Let the given ratio be the ratio of a greater to a less, that is, let the said $A B$ adjacent to the given angle be greater than AC; and as in the last casè, take a straight line DE given in position and magnitude, and make the angle DEF equal to the given angle $A B C$; therefore $E F$ is given ${ }^{c}$ in position: Also draw DG perpendicular to EF ; therefore if the ratio of BA to $A C$ be the same with the ratio of ED to the perpendicular DG, the triangles $A B C, D E G$ are similar ${ }^{\text {nI }}$, because the angles $\mathrm{ABC}, \mathrm{DEG}$ are equal, and DGE is a right angle : Therefore the
 angle ACB is a right angle, and the triangle ABC is given in ${ }^{\text {b }}$ species.

But if, in this last case, the given ratio of BA to AC be not the same with the ratio of ED to DG, that is, with the ratio of BA to the perpendicular AM drawn from A to BC ; the ratio of BA to AC must be less than ${ }^{\circ}$ the ratio of $\mathrm{BA}{ }^{\circ}{ }^{\circ} .5$. to AM, because AC is greater than AM. Make as DA to AC, so ED to DH ; therefore the ratio of ED to DH is less than the ratio of (BA to AM, that is, than the ratio of ED to DG ; and consequently DH isgreater? than DG; and because BA is greater than $A C, E D$ is greatere than DH. From the centre D, at the distance DH, : describe the circle KHF which necessarily meets the straight line EF in two points, because $D H$ is greater than $D G$, and less than DE. Let the circle meet $E F$ in the points F, K which are given,

P 10.5.

- 4. 5. as was shewn in the preceding case; and DF; DK being joined, the triangles $D E F$, $D E K$ are given in species, as was there shewn,

EUCLID'S

shewn: From the centre A, at the distance $A C$, describe a circle meeting $13 C$ again in L : And if the angle $A C B$ be less than a right angle, ALB must be greater than a right angle; and on the contrary. In the same manner, if the angle.DFE be less than a right angle, DKE must be greater than one; and on the contrarys Let each of the angles ACB , DFE be cither less or greater than a right angle ; and because in the triangles $\mathrm{ABC}, \mathrm{DLF}$ the angles $\mathrm{ABC}, \mathrm{DEF}$ are equal, and the sides BA, AC, and ED, DF, about two of the other angles proportionals, the triangle $A B C$ is similar m to the triangle DEF. In the same manner, the triangle ABL is similar to DEK. And the triangles DEF, DEK are given in species; therefore also the triangles
 $\triangle B C, A B L$ are given in species. And from this it is evident, that, in this third case, there are always two triangles of a different species, to which the things mentioned as given in the proposition can agree,

IF a triangle has one angle given, and if both the sides together about that angle have a given ratio to the remaining site ; the triangle is given in species:
Let the triangle $\triangle B C$ have the angle $B A C$ given, and let the sides $B A, A C$ together about that angle have a given ratio to BC ; the triangle ABC is given in species.

- 9.1. Bisect ${ }^{2}$ the angle BAC by the straight line AD ; therefore the angle BAD is given. And because as BA to AC , so is ${ }^{\text {b }}$ $B D$ to $D C$, by permutation, as $\triangle B$ to $B D$, so is AC to CD ; and as BA and AC together to BC , so is AB to BD . But the ratio of $B A$ and ΛC together to $B C$ is given, wherefore the ratio of AB to BD is given, and the angle BAD is given;

d47. dat. therefore ${ }^{d}$ the triangle $A B D$ is given in species, and the angle ABD is therefore given; the angle BAC is also given, wherefore the triangle $\Lambda B C$ is given in species.

A triangle which shall have the things that are mentioned in the proposition to be given, can be found in the following
manner. . Let EFG be the given angle, and let the ratio of H to K be the given ratio which the two sides about the angle EFG must have to the third side of the triangle; therefore because two sides of a triangle are greater than the third side, the ratio of H to K must be the ratio of a greater to a less. Bised ${ }^{2}$ the angle EFG by the straight line FL; and by the ${ }^{20.1}$ $47^{\text {th }}$ proposition find a triangle of which EFL is one of the angles, and in which the ratio of the sides about the angle opposite to FL is the same with the ratio of H to K : To do which, take PE given in position and magnitude, and draw EL perpendicular to FL: Then if the ratio of H to K be the same with the ratio of FE to EL, produce EL, and let it meet FGin P ; the triangle FEP is that which was to be found: For it has the given angle EFG; and because this angle is bisected by FL, the sides EF, FP together are to EP , as ${ }^{\mathrm{b}} \mathrm{FE}$ to EL , that is, as H to K .

But if the ratio of H to K be not the same with the ratio of FE to EL, it must be less
 than it, as was shewn in Prop. 47 , and in this case there are two triangles, each of which has the given angle EFL, and the ratio of the sides about the angle opposite to FL the same with the ratio of H to K. By Prop. 47, find these triangles EFM, EFN, each of which has the angle EFL for one of its angles, and the ratio of the side FE to Eli or EN the same with the ratio of H to K ; and let the angle EMF be greater, and ENF less than a right angle. And because H is greater than K, EF is greater than EN, and therefore the angle EFN, that is, the angle NFG, is less ${ }^{f}$ than the angle ENF. To each of these ${ }^{\text {f } 13.1 .}$ add the angles NEF, EFN ; therefore the angles NEF, EFG are less than the angles NEF, EFN, FNE, that is, than two right angles ; therefore the straight lines EN, FG must meet together when produced; let them meet in O , and produce EMI to G. Each of the triangles EFG, EFO has the things mentioned to be given in the proposition: For each of them has the given angle EFG; and because this angle is bisected by the straight line FMN, the sides EF, FG together have to EG the third side the ratio of FE to EM, that is, of H to K . In like manner, the sides EF, FO together have to EO the ratio which H has to K .

EUCLID'S

IF a triangle has one angle given, and if the sides about another angle, both togetber have a given ratio to the third side; the triangle is given in species.

Let the triangle ABC have one angle ABC given, and let the two sides $B A, A C$ about another angle $B A C$ have a given ratio to $B C$; the triarigle $A B C$ is given in species.

Suppose the angle BAC to be bisected by the straight line $A D ; B A$ and $A C$ together are to $B C$, as $A B$ to $B D$, as was shewn in the preceding proposition. But the ratio of BA and $A C$ together to $B C$ is given; therefore also the ratio of $A B$ to BD is given. And the angle ABD is given, wherefore ${ }^{2}$ the triangle $A B D$ is given in species; and consequently the angle $B A D$; and its double the angle BAC are given: And the angle ABC is given. Therefore the triangle ABC is given in species ${ }^{\text {b }}$.

A triangle which shall have the things mentioned in the proposition
 to be giver, may be thus found. Let EFG be the given angle, and the ratio of H to K the given ratio; and by Prop. 44. find the triangle EFL, which has the angle EFG for one of its angles, and the ratio of the sides
 $E F, F L$ about this angle the same with the ratio of H to K ; and make the angle LEM equal to the angle FEL. And because the ratio of H to K is the ratio which two sides of a triangle have to the third, H must be greater than K : and because EF is to FL , as H to K ; therefore EF is greater than FL, and the angle FEL, that is, LEM, is therefore less than the angle-ELF. Wherefore the angles LFE, FEM are less than two right angles, as was shewn in the foregoing proposition, and the straight lines FL, EM must meet if produced; let them meet in G, EFG is the triangle which was to be found; for EFG is one of its angles, and because the angle FEG is bisected by EL , the two sides FE , EG together have to the third side FG the ratio of EF to FL, that is, the given ratio of H to K.

PROP. L,

ร.

IF from the vertex of a triangle given in species, a straight line be drawn to the base in a given angle; it shall have a given ratio to the base.

From the vertex A of the triangle ABC which is given in species, let $A D$ be drawn to the base $B C$ in a given angle $A D B$; the ratio of $A D$ to $B C$ is given.

Because the triangle ABC is given in species, the angle $A B D$ is given, and the angle $A D B$ is given, therefore the triangle $A B D$ is given ${ }^{2}$ in species; wherefore the ratio of $A D$ to $A B$ is given. And the ratio of $A B$ to $B C$ is given ; and therefore ${ }^{b}$ the ratio of $A D$ to $B C$ is giver.

PROP. LI.

Rectiliveal figures given in species, are divided into triangles which are given in species.

Let the rectilineal figure ABCDE be given in species: ABCDE may be divided into triangles given in species:Join BE, BD; and because ABCDE is given in species, the angle BAE is given ${ }^{3}$, and the ratio of BA to AE is given 2; wherefore the triangle BAE is given in species ${ }^{\circ}$, and the angle AEB is therefore given? But the whole angle AED is given, and therefore the remaining angle BED is given, and the ratio of AE to EB
 is given, as also the ratio AE to ED; therefore the ratio of $B E$ to $E D$ is givenc. And the angle BFD is given, where- 9. ds fore the triangle BED is given ${ }^{6}$ in species. In the same manner, the triangle BDC is given in species: Therefore restilineal figures which are given in species are divided into triangles given in species.

EUCLID'S

PROP. LII.

F two triangles given in species be described upon the same straight line ; they shall have a given ratho to one another.

- Let the triangles $A B C, A B D$ given in species be described upon the same straight line $A B$; the ratio of the triangle $A B C$ to the triangle ABD is given.
- Through the point C, draw $C E$ parallel to $A B$, and let it meet DA produced in E, and join BE. Because the triangle $A B C$ is given in species, the angle $B A C$, that is, the and le ACE , is given; and because the triangle ABD is given in species, the angle DAB, that is, the angle AEC, is given. Therefore the ariangre $A C E$ is given in. In 0 species; wherefore the ratio of EA to AC is
2 3. def. given ${ }^{2}$, and the ratio of $C A$ to $A B$ is given,
 as also the ratio of $B A$ to $A D$; therefore the ratio of EA to AEB , and as the triangle AEB , or ACB , is to the triangle
a1.6. ADB , so is the straight line EA to AD : But the ratio of EA to AD is given; therefore the ratio of the triangle ACB to the triangle ADB is given.

PROBLEM:

To find the ratio of two triangles $A B C, A B I$ given in pecies, and which are described upon the same straight line All.

Take a straight line FG given in position and magnitude, and because the angles of the triangles $\mathrm{ABC}, \mathrm{ABD}$ are given, at the points F, G of the straight line $F G$, make the angles
e23. 1. GFH, GFK equal to the angles $B A C, B .1 D$; and the angles FGH, FGK equal to the angles $A B C, A B D$, each to each. Therefore the triangles $\mathrm{ABC}, \mathrm{ABD}$ are equiangular to the friangles FGH, FGK, each to each. Through the point II draw HL parallel to FG , meeting KF produced in L. And because the angles $\mathrm{BAC}, \mathrm{BAD}$ are equal to the angles $\mathrm{GH} \mathrm{H}, \mathrm{GFK}$, each to each; therefore the angles $\triangle \mathrm{CE}, \mathrm{AEC}$ are equal to FHL , FLH, each to each, and the triangle AEC equiangular to the triangle FLH. Therefore as EA to AC, so is LF to FH, and
as $C A$ to $A B$, so HF to $F G$; and as $B A$ to $A D$, so is GF to FK ; wherefore, ex æquali, as EA to AD , so is LF to FK . But as was shewn, the triangle $A B C$ is to the triangle $A B D$, as the straight line EA to AD, that is, as LF to FK. The ratio therefore of LF to FK has been found, which is the same with the ratio of the triangle $A B C$ to the triangle $A B D$.

PROP. LIII.

1F two rectilinear figures given in species be de- $5 \sec \mathrm{x}$. scribed upon the same straight line; they shall have a given ratio to one another.

Let any two rectilineal figures $A B C D E, A B F G$, which are given in species, be described upon the same straight line $A B$; the ratio of them to one another is given.

Join $\mathrm{AC}, \mathrm{AD}, \mathrm{AF}$; each of the triangles $\mathrm{AED}, \mathrm{ADC}$, $\mathrm{ACB}, \mathrm{AGF}, \mathrm{ABF}$ is given ${ }^{3}$ in species. And because the ri- ${ }^{2} 51$. d 3 .. angles $A D E, A D C$ given in species are described upon the same straight line $A D$, the ratio of $E A D$ to DAC is given ${ }^{\text {b }}$; and, by composition, the ratio of EACD to DAC is givens. And the ratio DAC to CAB is given ${ }^{b}$, because they are described upon the same straight line $A C$; therefore the ratio of EACD to ACB is given ${ }^{\text {; }} \mathrm{H}$ KI MN N $\mathrm{O}^{\circ 9 . \text { dat }}$ and, by composition, the ratio of
 $A B C D E$ to $A B C$ is given. In the same manner, the ratio of ABFG to ABF is given. But the ratio of the triangle ABC to the triangle $A B{ }^{\prime}$ is given; wherefore ${ }^{\text {b }}$ because the ratio of $A B C D E$ to $A B C$ is given, as also the ratio of $A B C$ to $A B F$, and the ratio of ABF to ABFG ; the ratio of the reatilineal $A B C D E$ to the rectilinear $A B F G$ is given.

PROBLEM.

To find the ratio of two rectilineal figures given in species: and described upon the same straight line.

Let $\mathrm{ABCDE}, \mathrm{ABFG}$ be two rectilineal figures given in species, and described upon the same straight line $A B$, and join $\mathrm{AC}, \mathrm{AD}, \mathrm{AF}$. Take a straight line HK given in position and magnitude, and by the 52 d dat. find the ratio of the riangle ADE to the triangle ADC , and make the ratio of HK
EUCLID'S
to KL the same with it. Find also the ratio of the triangle ACD to the triangle ACB . And make the ratio of KL to LM the same. Also, find the ratio of the triangle ABC to the triangle ABF , and make the ratio of LM to MN the same. And, lastly, find the ratio of the triangle AFB to the triangle. AFG, and make the ratio of MN to NO the same. Then the ratio of $A B C D E$ to $A B F G$ is the same with the ratio of HM to MO.

Because the triangle EAD is to the triangle DAC , as the straight line HK to KL ; and as the triangle DAC to CAB, so is the straight line KL to LM ; therefore by using composition as often as the number of triangles requires, the rectilineal

H K L MN ABCDE is to the triangle ABC , as the straight line HM to ML. In like manner because the triangle GAF is to $F A B$, as ON to NM, by composition, the rectilineal ABFG is to the triangle $A B F$ as $M O$ to $N M$, and by inversion, as $A B F$ to ABFG , so is NM to MO. And the triangle $A B C$ is to ABF , as LM to MN. Wherefore, because as ABCDE to $A B C$, so is $H M$ to $M L$; and as $A B C$ to $A B F$, so is LM to MN ; and as ABF to ABFG , so is MN to MO ; ex equali, as the rectilineal $A B C D E$ to $A B F G$, so is the straight HM to MO .

PROP. RIV.

1F two straight lines have a given ratio to one anethen; the similar rectilineal figures described upon them similarly, shall have a given ratio to one another:

Let the straight lines $A B, C D$, have a given ratio to one another, and let the similar and similarly placed rectilineal figures I, F be described upon them ; the ratio of E to F is given.

To $A B, C D$, let G be a third proportional ; therefore as $A B$ to CD , so is CD to G . And the ratio of $A B$ to $C D$ is given; wherefore the ratio of CD to G is given ; and consequently the ratio of $A B$ to G

[^15]

H is also given ${ }^{3}$. But as $A B$ to G, so is the figure E to the figure ${ }^{b} \mathrm{~F}$. . Therefore the ratio of E to F is given.

D A T A.

PROBLEM.

To find the ratio of two similar rectilineal figures E, F, similarly described upon straight lines $A B, C D$ which have a given ratio to one another: Let G be a third proportional to $A B, C D$.

Take a straight line H given in magnitude ; and because the ratio of $A B$ to $C D$ is given, make the ratio of H to K the same with it ; and because H is given, K is given. As H is to K , so make K to L ; then the ratio of E to F is the same with the ratio of H to L ; for AB is to CD , as H to K , wherefore $C D$ is to G, as K to L; and, ex æquali, as $A B$ to G, so is H to L : But the figure E is to the figure F, as $A B=2$ Cor. to G , that is, as H to L .

PROP. LV.

51.

IF two straight lines have a given ratio to one another; the rectilineal figures given in species, described upon them, shall have to one another a given ratio.

Let $A B, C D$ be two straight lines which have a given ratio to one another ; the rectilineal figures E, F given in species and described upon them, have a given ratio to one another.

Upon the straight line AB , describe the figure AG similar and similarly placed to the figure F; and because F is given in species, AG is also given in species: Therefore, since the figures $E, A G$ which are given in species, are described upon the same straight line $A B$, the ratio of E to $A G$ is given 2, and because the ratio of $A B$ to
 $C D$ is given, and upon them are described the similar and similarly placed rectilineal figures $A G, F$, the ratio of $A G$ to 054 .dat. F is given ${ }^{b}$; and the ratio of $A G$ to E is given; therefore the ratio of E to F is givenc.

PROBLEM.

To find the ratio of two reCtilinez! figures E, F given in species and described upon the straight lines $A B, C D$ which have a given ratio to one another.

Take a straight line H given in magnitude; and because the rectilineal figures $E, A G$ given in species, are described upon the same straight line AB , find their ratio by the 53 dat. and make the ratio of H to K the same, K is therefore given. And because the similar rectilineal figures $A G, F$ are described

EUCLID'S

upon the straight lines $A B, C D$, which have a given ratio, find their ratio by the 54 th dat. and make the ratio of K to L the same: The figure E has to F the same ratio which H has to $\mathrm{L}:$ For, by the construction, as E is to AG , so is H to K ; and as $A G$ to F , so is K to L : Therefore, ex æquali, as E to F ; so is H to L .
52.

PROP. LVI.

IF a rectilineal figure given in species be described upon a straight line given in magiitude; the figure is given in magnitude.

Let the rectilineal figure ABCDE given in species, be described upon the straight line AB given in magnitude; the figure ABCDE is given in magnitude.
Uporn AB let the square AF be described; therefore AF is given in species and magnitude, and because the rectilineal
*35. dat,
figures $A B C D E, A F$ given in specics are described upon the same straight line $A B$, the ratio of $A B C D E$ to $A F$ is

To find the magnitude of a rectilineal figure given in species described upon a straight line given in magnitude.

Take the straight line GH equal to the given straight line $A B$, and by the 53 ddat . find the ratio which the square
 AF upon AB has to the figure ABCDE ; and make the ratio of GH to HK the same; and upon GH describe the square GL, and complete the parallelogram LHKM; the figure ABCDE is equal to LHKM ; because AF is to ABCDE , as the straight line GH to HK, that is, as the figure GL to HM ; and AF is equal to GL ; therefore ABCDE is equal to HM^{c}.

> PROP. LVII,

IF two rectilineal figures are given in species, and if a side of one of them has a given ratio to a side of the other ; the ratios of the remaining sides to the remaining sides shall be given.

Let AC, DF be two rectilinear figures given in species, and Let the ratio of the side AB to the side DE be given, the ratios of the remaining sides to the remaining sides are also given.

Because the ratio of $A B$ to $D E$ is given, as also the ratios 23. def of AB to BC , and of DE to EF , the ratio of BC to EF is given ${ }^{\text {b }}$. In the same manner the ratios of the other sides to the other sides are given.

The ratio which BC has to EF may be found thus: 'Take a straight line G given in magnitude, and because the ratio of BC to BA is given, make the ratio of G to H the same; and because the ratio of $A B$ to $D E$ is given,
 make the ratio of H to K the same; and make the ratio of K to L the same with the given ratio of DE to EF . Since therefore as BC to BA , so is G to H ; and as BA to DE , so is H to K ; and as DE to EF so is K to L ; ex æquali, BC is to EF , as G to L ; therefore the ratio of G to L has been found, which is the same. with the ratio of BC to EF .

PROP. LVIII.

I
I two similar rectilinear figures have a given ratio oe N. t^{0}. one another, their homologous sides have also a given ratio to one another.
Let the two similar reatilineal figures A, B have a given ratio to one another, their homologous sides have also a given ratio.
Let the side CD be homologous to EF , and to CD, EF let the straight line G be a third proportional. As therefore ${ }^{3} C D=2{ }_{20.6 \text {. }}^{2}$.
to G, so is the figure A to B; and to G , so is the figure A to B ; and the ratio of \dot{A} to B is given, therefore the ratio of $C D$ to G is given; and $\mathrm{CD}, \mathrm{EF}, \mathrm{G}$ are proportionals; wherefore ${ }^{\text {b }}$ the ratio of CD to EF

- 10. dat. is given.
The ratio of CD to EF may be found thus: Take a straight line
 H given in magnitude ; and because the ratio of the figure A to B is given, make the ratio of H to K the same with it: And, as the $13^{\text {th }}$ dat. directs to be done, find a mean propor-

$$
E \mathrm{U} \text { C I I D'S }
$$

tional L between H and K ; the ratio of CD to EF is the same with that of H to L . Let G be a third proportional to CD, EF ; therefore as CD to G, so is (A to B, and so is) H to K; and as CD to EF , so is H to L , as is shewn in the 13 th dat.

PROP. LIX.

$S_{c e s} \mathrm{~N}$. IF two rectilineal figures given. in species have a given ratio to one another, their sides shall likewise have given ratios to one another.

Let the two rectilineal figures A, B, given in species, have a given ratio to one another, their sides shall also have given ratios to one another.

If the figure A be similar to B, their homologous sides shall have a given ratio to one, another, by the preceding proposition; and because the figures are given in species, the sides of
3. difo

- 9, dal. each of them have given ratios ${ }^{2}$ to one another; therefore each side of two of them has ${ }^{b}$ to each side of the other a given ratio.

But if the figure A be not similar to B, let $C D, E F$ be any two of their sides; and upon EF conceive the figure EG to be described similar and similarly placed to the figure A, so that CD, EF be homologous sides; therefore EG is given in species; and the figure B is given in species; wherefore ${ }^{c}$ the ratio of B to EG is given; and the ratio of A to B is given, therefore ${ }^{b}$ the ratio of the

H
K

L figure A to EG is given; and A is similar to EG ; therefore
4 58, dat. the ratio of the side CD to EF is given; and consequently ${ }^{\text {b }}$ the ratios of the remaining sides to the remaining sides are given.

The ratio of CD) to EF may be found thus: Take a straight line H given in magnitude, and because the ratio of the figure A to B is given, make the ratio of H to K the same with it.
 make the ratio of K to L the same: Between H and L find a mean proportional M , the ratio of CD to EF is the same with the ratio of H to M; because the figure A is to B as H to K; and as B to $E G$, so is K to L; ex æquali, as A to $E G$, so is
H to L : And tine figures $A, E G$, are similar, and M is a mean proportional between H and L ; therefore, as was shewn in the preceding proposition, CD is to EF as H to M .

PROP. LX.

I_{F}F a rectilinear figure be given in species and magnitude, the sides of it shall be given in magnitude.

Let the rectilinear figure A be given in species and magnitude, its sides are given in magnitude.

Take a straight line BC given in position and magnitude, and upon $B C$ describe ${ }^{2}$ the figure D similar, and similarly ${ }^{2} 15 . \varepsilon$. placed, to the figure A , and let EF be the side of the figure A homologons to BC the side of D; therefore the ffgure D is given in apecries. And because upon the given straight line BC the figure- D given in species is described, D
 is given ${ }^{\mathrm{b}}$ in magnitude, and the figure A is given in magni- 56 . dat. rude, therefore the ratio of A to D is given: And the figure A is similar to D ; therefore the ratio of the side EF to the homologous side BC is given ${ }^{c}$; and $B C$ is given, wherefore $d^{d}{ }^{c} 58 .{ }^{5}$ dato ${ }^{2}$ date EF is given: And the ratio of EF to EG is given, therefore ${ }^{3} 3$. def. EG is given. And, in the same manner, each of the other sides of the figure A can be shewn to be given.

PROBLEM.

To describe a rectilineal figure A similar to a given figure D, and equal to another given figure H. It is Prop. 25, B. 6. Elem.

Because each of the figures D, H is given, their ratio is given, which may be found by making ${ }^{f}$ upon the given straight $f_{\text {cor. }}$ 45.1. line $B C$ the parallelogram $B K$ equal to D, and upon its side CK making the parallelogram KL equal to H in the angle KCL equal to the angle MBC ; therefore the ratio of D to H , that is, of BK to KL , is the same with the ratio of BC to CL : And because the figures D, A are similar, and that the ratio of D to A , or H , is the same' with the ratio of BC to CL ; by the 58 th dat. the ratio of the homologous sides BC, EF is the same with the ratio of BC to the mean proportional between BC and CL. Find EF the mean proportional; then EF is the

EUCLID'S

side of the figure to be described, homologous to $B C$ the side of D , and the figure itself can be described by the 18th Prop. B. 6 , which, by the construction, is similar to D; and because
62. cor.
20. 6.
${ }^{\text {n }} 14.5$.
57.

See N.
def. And a parallelogram equal to this *cor. 45. 1. figure can be applied ${ }^{b}$ to the given straight line EF in an angle equal to the given angle BAC. Let this be the parallelogram EFHG, having the angle FEG equal to the angle BAC. And because the pa-
 rallel. g ms AD, EH are equal, and have the angles at A and E equal; the sides about them are reciprocally proportional ${ }^{c}$; therefore as AB to EF , so is EG to AC : And $\mathrm{AB}, \mathrm{EF}, \mathrm{EG}$ are given, therefore also AC is di2.6. given. Whence the way of finding AC is manifest.

PROP. LXII.

*en. IF a parallelogram has a given angle, the rectangle contained by the sides about that angle has a given ratio to the parallelogram.

Let the parallelogram $A B C D$ have the given angle ABC , the rectangle $\mathrm{AB}, \cdot \mathrm{BC}$ has a given ratio to the parallelogram AC.

From the point A draw AE perpendcular to BC ; because the angle ABC is given, as also the angle AEB, the triangle
> 43. dat. ABE is given ${ }^{2}$ in species; therefore the ratio of BA to AE is given. But as BA to $A E$, so is ${ }^{b}$ the rectangle $A B, B C$, to the rectangle AE, BC, therefore the ratio of

the rectangle $A B, B C$ to $A E, B C$ that ise, to the parallelo- 35.1 . gram $A C$ is given.

And it is evident how the ratio of the rectangle to the parallelogram may be found, by making the angle FGH equal. to the given angle ABC , and drawing, from any point F in one of its sides, FK° perpendicular to the uther GH ; for GF is to $F K$, as $B A$ to $A E$, that is, as the redtangle $A B, B C$, to the parallelogram AC.

Cor. And if a triangle $A B C$ has a given angle $A B C$, the 66 . rectangle $A B, B C$ contained by the sides about that angle, shall have a given ratio to the triangle ABC .

Complete the parallelogram ABCD ; therefore, by this proposition, the rectangle AB, BC has a given ratio to the parallelogra:n $A C$; and $A C$ has a given ratio to its half the triangle ${ }^{d} A B C$; therefore the rectangle $A B, B C$ has a given 441.1. 'ratio to the triangle ABC .

And the ratio of the rectangle to the triangle is found thus: Make the triangle FGK, as was shewn in the proposition : the ratio of GF to the half of the perpendicular $F K$ is the same with the ratio of the rectangle $A B, B C$ to the triangle $A B C$. Because, as was shewn, GF is to FK , as AB, BC to the paralle$\operatorname{logram~AC}$; and FK is to its half, as AC is to its half, which is the triangle ABC ; therefore, ex æquali, GF is to the half of $F K$, as $A B, B C$ rectangle is to the triangle $A B C$.

PROP. LXIII.

IF two parallelograms be equiangular, as the side of the first to a side of the second, so is the other side of the second to the straight line to which the other side of the first has the same ratio which the first parallelogram has to the second. And consequently, if the ratio of the first parallelogram to the second be given, the ratio of the other side of the first to that straight line is given; and if the ratio of the other side of the first to that straight line be given, the ratio of the first parallelogram to the second is given.
Let AC, DF be two equiangular parallelograms, as $\mathrm{BC}, 2$ side of the first, is to EF, a side of the second, so is DE, the other side of the second, to the straight line to which AB , the other side of the first has the same ratio which AC has to DF .

EUCLID'S

Produce the straight line AB , and make as BC to EF , so DE to BG , and complete the parallelogram BGHC; therefore, because BC or GH, is to EF, as DE to BG, the sides aijout the equal angles $\mathrm{BGH}, \mathrm{DEF}$ are reciprocally proportional; wherefore ${ }^{2}$ the parallelogram BH is equal to DF ; and AB is to BG , as the parallelogram AC is to BH , that is, to DF ; as therefore BC is to EF , so is DE to BG, which is the straight line to which
 AB has the same ratio that AC has to DE.

And if the ratio of the parallelogram $A C$ to $D F$ be given, then the ratio of the straight line AB to BG is given; and if the ratio of $A B$ to the straight line $B G$ be given, the ratio of the parallelogram AC to DF is given.

PROP. LXIV.
See N. F two parallelograms have unequal but given angees, and if as a side of the first to a side of the second, so the other side of the second be made to a certain straight. line; if the ratio of the first parallelogram to the second be given, the ratio of the other side of the first to that straight line shall be given. And if the ratio of the other side of the first to that straight line be given, the ratio of the first parallelogram to the second shall be given.

Let $\mathrm{ABCD}, \mathrm{EFGH}$ be two parallelograms which have the unequal but given angles $\mathrm{ABC}, \mathrm{EFG}$; and as BC to FG , so make EF to the straight line M. If the ratio of the parallelogram $A C$ to $E G$ be given, the ratio of $A B$ to M is given.

At the point B of the straight line $B C$ make the angle CBK equal to the angle EFG, and complete the parallelogram KBCL. And because the ratio of AC to EG is given, and that AC is equal ${ }^{2}$ to the parallelogram KC , therefore the ratio of KC to EG is given; and KC, EG are equiangular ; there-
-63. dat. fore as BC to FG, so is EF to the straight line to which KB has a given ratio, viz. the same which the parallelogram KC has to EG; but as BC so FG, so is EF to the straight line M; therefore $K B$ has a given ratio to M; and the ratio

D $\mathrm{A}^{\mathrm{T}} \mathrm{A}$.
of $A B$ to $B K$ is given, because the triangle $A B K$ is given in species' ; therefore the ratio of $A B$ to M is givend.

And if the ratio of $A B$ to M be given, the ratio of the parallelogram $A C$ to $E G$ is given: for since the ratio of $K B$ to BA is given, as also the ratio of AB to M , the ratio of KB to M is given ${ }^{2}$; and because the parallelograms KC, EG are equiangular, as $B C$ to $F G$, so is ${ }^{3} \mathrm{EF}$ to the straight line to which KB has the same ratio which the parallelogram $K C$ has to $E G$: but as $B C$ to $F G$, so is EF to M ; therefore KB is to M , as the parallelogram KC is to EG ; and
 the ratio of KB to M is given, therefore the ratio of the pa- 75. rallelogram KC , that is, of AC to EG , is given.

Cor. And if two triangles $\mathrm{ABC}, \mathrm{EFG}$, have two equal angles, or two unequal, but given, angles $A B C, E F G$, and if as BCa side of the first to FG 2 side of the second, so the other side of the second EF be made to a straight line M; if the ratio of the triangles be given, the ratio of the other side of the first to the straight line M is given.

Complete the parallelograms $\mathrm{ABCD}, \mathrm{EFGH}$; and because the ratio of the triangle ABC to the triangle EFG is given, the ratio of the parallelogram AC to EG is givene, because the pa- e 15.5 . rallelograms are double ${ }^{5}$ of the triangles: and because BC is to ${ }^{\text {f }} 41.1$. $F G$, as $E F$ to M, the ratio of $A B$ to M is given by the 63 d dat. if the angles $A B C, E F G$ are equal; but if they be unequal, but given angles, the ratio of $A B$ to M is given by this proposition.

And if the ratio of $A B$ to M be given, the ratio of the parallelogram $A C$ to FG is given by the same propositions; and therefore the ratio of the triangle ABC to EFG is given.

PROP. LXV.

IF two equiangular parallelograms have a given 65 . ratio to one another, and if one side has to one side a given ratio; the other side shall also have to the other side a given ratio.

Let the two equiangular parallelograms $A B, C D$ have a given ratio to one another, and let the side EB have a given ratio to the side FD; the other side AE has also a given ratio to the other side CF.

Because

Because the two equiangular parallelograms AB, CD have a given ratio to one another: as EB, a side of the first, is to FD, ${ }^{6}$ '63. dat. a side of the second, so is ${ }^{2} \mathrm{FC}$, the other side of the second, to the straight line to which AE , the other side of the first, has the same given ratio which the first parallelogram $A B$ has to the other CD. Let this straight line be EG; therefore the ratio of AE to EG is given; and EB is to FD , as FC to EG, therefore the ratio of FC to EG is given, because the ratio of EB to FD is given; and because the ratio of AE to EG, as also the ratio of FC to EG is given ; the ratio
-9. dat. of AE to CF is given ${ }^{\text {b }}$.

The ratio of AE to CF may be found thus: Take a straight line H given in magnitude; and because the ratio of the parallelogram AB to CD is given, make the ratio of H to K the same with it. And because the ratio of FD to EB is given, make the ratio of K to L the same: The ratio of AE to CF is the same with the ratio of H to L . Make as EB to FD , so FC to EG, therefore, by inversion, as FD to EB, so is EG to FC ; and as AE to EG , so is ${ }^{2}$ (the parallelogram AB to CD , and so is) H to K ; but as EG to FC , so is (FD to EB , and so is) K to L ; therefore, ex æquali, as AE to FC , so is H to L .

PROP. LXVI.

IF two parallelograms have unequal but given angles, and a given ratio to one another; if one side has to one side a given ratio, the other side has also a given ratio to the other side.

Let the two parallelograms A BCD, EFGH which have the given unequal angles $A B C, E F G$ have a given ratio to one another, and let the ratio of BC to FG be given; the ratio also of AB to EF is given.

At the point B of the straight line $B C$ make the angle $C B K$ equal to the given angle $\mathbf{E F G}$, and complete the parallelogram BKLC; and because each of the angles BAK, AKB is given, the triangle $A B K$ is given ${ }^{2}$ in species; therefore the ratio of AB to BK is given; and because, by the hypothesis,
she ratio of the parallelogram AC to EG is given, and that AC is equal ${ }^{b}$ to BL ; therefure the ratio of BL to EG is given: 35.1 . and because BL is equiangular to EG, and by the hypothesis, the ratio of $B C$ to $F G$ is given; thereforec the ratio of $K B$ to $c 65$. dat. $E F$ is given, and the ratio of KB to BA is given; the ratio therefored of $A B$ to $E F$ is given.

The ratio of $A B$ to EF may be found thus: Take the straight line MN given in position and magnitude; and make the angle MNO equal to the given angle BAK, and the angle MNO equal to the
 given angle EFG, or AKB: And because the parallelogram BL is equiangular to EG , and has a given ratio to it, and that the ratio of $B C$ to $F G$ is given; find by the 65 th dat. the ratio of KB to FF: and make the ratio of NO to UP the same with it: Then the ratio of $A B$ to $E F$ is the same with the ratio of MO to OP : For since the triangle ABK is equiangular to MON , as AB to BK , so is MO to ON : And as KB to EF , so is NO to OP; therefore ex aquali, as AB to EF , so is MO to OP .

PROP. LXVII. $\%$
IF the sides of two equiangular parallelograms see N . have given ratios to one another; the parallelograms shall have a given ratio to one another.

Let $\mathrm{ABCD}, \mathrm{FFGH}$ be twod equiangular parallelograms, and let the ratio of $A B$ to $F F$, as also the ratio of $B C$ to $F G$, be given ; the ratio of the parallelogram AC to EG is given.

Take a straight line K given in magnitude, and because the ratio of $A B$ to $E F$ is given make the ratio of K to L the same with it ; therefore L is given ${ }^{2}$: And because the ratio of $B C$ to $F G$ is given, make the ratio of L to \bar{M} the same: Therefore M is given ${ }^{2}$, and K is given; wherefore ${ }^{b}$ the
 ratio of K to M is given: But the parallelogram $A C$ is to the b. dat. parallelogram EG, as the straight line K to the straight line M,

E U C LI D'S

as is demonstrated in the 23 d Prop. of B. 6. Elem. therefore the ratio of AC to EG is given.

From this it is plain how the ratio of two equiangular parallelograms may be found when the ratios of their sides are given.
70.

PROP. LXVIII.

See N.

IF the sides of two parallelograms which have unequal, but given angles, have given ratios to one another; the parallelograms shall have a given ratio to one another.

Let two parallelograms $\mathrm{ABCD}, \mathrm{EFGH}$ which have the given unéqual angles $A B C, E F G$ have the ratios of their sides, viz. of $A B$ to $E F$, and of $B C$ to $F G$, given ; the ratio of the parallelogram $A C$ to $E G$ is given.

At the point B of the straight line BC , make the angle CBK equal to the given angle EFG, and complete the parallelogram KBCL: And because each of the angles BAK, BKA

2 43. dat.
b 9. dat.
c 67; dat.
435. I. is given, the triangle $A B K$ is given ${ }^{2}$ inspecies: Therefore the ratio of $A B$ to $B K$ is given; and the ratio of $A B$ to FF is given, wherefore ${ }^{b}$ the ratio of BK to EF is given. And the ratio of $B C$ to $F G$ is given ; and the angle $K B C$ is equal to the angle EFG; therefore the ratio of the parallelogram KC to EG is given: But KC is equald to $A C$; therefore the ratio of $A C$ to $E G$ is given.

The ratio of the parallelogram AC to EG may be found thus: Take the straight line MN given in positior and magnitude, and make the angle MNO equal to the given angle KAB , and the angle NMO equal to the given angle AKB or FEH : And because the ratio of $A B$ to $E F^{\prime \prime}$ is given, inake the ratio of NO to P the same; also make the ratio of P to Q the same with the given ratio of $B C$ to $F G$, the parallelogram $A C$ is to EG, as MO to Q .

Because the angle $K A B$ is equal to the angle $M N O$, and the angle AKB equal to the angle NMO; the triangle AKB is equiangular to NMO: Therefore as KB to BA , so is MO to ON ; and as BA to EF , so is NO to P ; wherefore, ex æquali, as KB to EF, so is MO to P: And BC is to FG, as P
to Q, and the parallelograms KC, EG are equiangular ; therefore, as was shewn in Prop. 67, the parallelogram KC, that is, $A C$ is to $E G$, as $M O$ to Q.

Cor. I. If two triangles $A B C, D E F$ have two equal an- 7 . gles, or two unequal, but given angles $\mathrm{ABC}, \mathrm{DEF}$, and if the ratios of the sides about these angles, viz. the ratios of $A B$ to $D E$, and of BC to EF be given; the triangles shall have a given ratio to one another.

Complete the parallelograms, BG ,
 EH ; the ratio of BG to EH is givena ; and therefore the tri- $\mathbf{a} 67$ or 65 .
 one another.

Cor. 2. If the bases BC, EF of two triangles $\mathrm{ABC}, \mathrm{DEF}$ have a given ratio to one another, and if also the straight lines AG, DH which are drawn to the bases from the opposite angles, either in equal angles, or unequal, but given angles AGC, DHF have a given ratio to one a given ratio to one another.
Draw BK, ELparallel to AG, DH , and complete the paral-
 lelograms KC, LF. and because the angles AGC, DHF, or their equals, the angles KBC, LEF are either equal, or unequal, but given; and that the ratio of AG to DH , that is, of KB to LE, is given, as also the ratio of BC to EF ; therefore ${ }^{2}=67$ or 68 . the ratio of the parallelogram KC to LF is given; wherefore also the ratio of the triangle ABC to DEF is given ${ }^{\text {b }}$.

PROP. LXIX.

IF a parallelogram which has a given angle be applied to one side of a rectilineal figure given in species; if the figure have a given ratio to the parallelogram, the parallelogram is given in species.

Let $A B C D$ be a rectilineal figure given in species, and to one side of it $A B$, let the parallelogram $A B E F$ having the given angle $A B E$ be applied; if the figure $A B C D$ has agiven ratio to the parallelogram BF , the parallelogram BF is given in species.

Through the point A draw $A G$ parallel to $B C$, and through the point C draw $C G$ parallel to $A B$, and produce $G A, C B$ to
2. . cef.
c9. dat.
${ }^{-1} 35.1$.
${ }^{6} 1.6$.
the points H, K; because the angle ABC is given², and the ratio of $A B$ to $B C$ is given, the figure $A B C D$ being given in species; therefore, the parallelogram $B G$ is given ${ }^{2}$ in species. And bicause upon the same straight line AB the two rectilineal figures BD, BG given in species are deseribed, the ratio of $B D$ to $B G$ is given ${ }^{b}$; and, by hypothesis, the ratio of BD to the parallelogram BF is given; wherefore ${ }^{\text {t }}$ the ratio of BF , that is', of the parallelogram BH , to ' BG is given, and therefoie the ratio of the straight line $K B$ to $B C$ is given ; and the ratio of $B C$ to $B A$ is given, wherefore the ratio of KB to BA is given ${ }^{\mathrm{c}}$: And because the angle ABC is giveit, the adjucent angle $A B K$ is given; and the angle $A B E$ is given, theretole the remaining angle KBE is given. The angle EKB is also given; because it is equal to the angle ABK ; therefore the triahgle. BKE is given in species, and consequently the ratio of EB to BK is given; and the ratio of KB to BA is given wherefore ${ }^{\text {e }}$ the 1 atio or EB to BA is given; and the angle ABE is given, therefore the parallelogran! BF is given ${ }^{\text {a }}$ in species.

A parallelogram similar to BF may be found thus: Take a straight
 line LM given in position and magnitude; and because the angles $A B K, A B E$ are given, make the angle NLM equal to ABK, and the angle NI.O equal to ABE. And because the ratio of BF to BD is given, make the ratio of LM to P the same with it; and because the ratio of the figure $B D$ to $B G$ is given, find this ratio by the 53 d dat. and make the ratio of P to Q the same. Also, because the ratio of $C B$ to $B A$ is given, make the ratio of Q to R the same; and take $L N$ equal to R; through the point $-v J$ draw $O M$ parallel to $L N$, and complete the parallelogram. NLOS; then this is similar to the parallelogram BF .

Because the angle $A B K$ is equal to NLM, and the angle ABE to NLO, the angle KBE is equal to MLO; and the angles $13 \mathrm{KE}, \mathrm{LMO}$ are equal, because the angle ABK is equal to NLM; therefore the triangles $\mathrm{EKE}, \mathrm{LMO}$ are equiangular to one another ; wherefore, as BE to $B \mathrm{BK}$, so is LO to LM ; and because as the figure BF to BD , so is the straight line $L M$ to P; and as $B D$ to $B G$, so is P to Q; ex equali; as $B F$, that is ${ }^{d}$, $B H$ to $B G$, so is $L M$ to Q : but $B H$ is to 0°
$B G$, as $K B$ to $B C$; as therefore $K B$ to $B C$, so is $L M$ to Q; and because BE is to BK as LO to LM ; and as BK to BC , so is $L M$ to Q : And as $B C$ to $B A$, so Q was made to R; therefore, ex xquali, as $B E$ to $B A$, so is $L O$ to R, that is, to LN ; and the angles $\mathrm{ABE}, \mathrm{NLO}$ are equal ; therefore the parallelogram BF is similar to LS.

IrF two straight lines have a given ratio to one ano- See N. ther, and upon one of them be described a rectilineal figure given in species, and upon the other a parallelogram having a given angle; if the figure have a given ratio to the parallelogram, the parallelogram is given in species.

Let the two straight lines $A B, C D$ have a given ratio to one another, and upon $A B$ let the figure $A E B$ given in species be described, and upon $C D$ the parallelogram DF having the given angle FCD; if the ratio of AEB to DF be given, the parallelogram DF is given in species.

Upon the straight line $A B$, conceive the parallelogram $A G$ to be described similar, and similarly placed to FD; and because the ratio of $A B$ to $C D$ is given, and upon them are described the similar rectilineal figures AG , FD ; the ratio of AG to FD is given ${ }^{2}$; and the ratio of FD to AEB is given; therefore ${ }^{\text {b }}$ the ratio of $A E B$ to $A G$ is given; and the angle ABG is given, because it isequal to the angle FCD ; because therefore the parallelogram $A G$ which has a given argle $A B G$ is applied to a sile $A B$ of the figure $A E B$ given
 in species, and the ratio of $A E B$ to $A G$ is given, the parallelogram $A G$ is given c in species; but $F D$ is similar to $A G ;{ }^{\text {c } 69 . ~ d a t . ~}$ thercfore FD is given in species.

A parallelogram similar to FD may be found thus: Take a straight line H given in magnitude; and because the ratio of the figure AEB to FD is given, make the ratio of H to K the same with it : Also, because the ratio of the straight line $C D$ to $A B$ is given, find by the 54 th dat. the ratio which the figure $F D$ described upon $C D$ has to the figure $A G$ described upon $A B$ similar to $F D$; and make the, ratio of K to L the same with this ratio: And because the ratios of H to K , and of K

EUCLID's

-9. dat. to L are given, the ratio of H to L is given ${ }^{\text {b }}$; because, therefore, as $\Lambda E B$ to $F D$, so is H to K : and as $F D$ to $A G$, so is K to L; ex aequali, as AEB to $A G$ so is H to L; therefore the ratio of $A E B$ to $A G$ is given; and the figure $A E B$ is given in species, and to its side $A B$ the parallelogram $A G$ is applied in the given angle ABG ; therefore by the 69th dat. a parallelogram may be found similar to AG: Let this be the parallelogram MN ; MN also is similar to FD; for, by the construction, $M N$ is similar to $A G$, and $A G$ is similar to $F D$; therefore the parallelogram FD is similar to MN .

PROP. LXXI.

81. TF the extremes of three proportional straight lines have given ratios to the extremes of other three proportional straight lines; the means shall also have a given ratio to one another: And if one extreme has a given ratio to one extreme, and the mean to the mean; likewise the other extreme shall have to the other a given ratio.

Let A, B, C be three proportional straight lines, and D, E, F, three other; and let the ratios of A to D, and of C to F, be given ; then the ratio of B to E is also given.

Because the ratio of A to D, as also of C to F, is given, the
267 , dat. ratio of the rectangle A, C to the rectangle D, F is given ${ }^{2}$; but the square of B is equal ${ }^{b}$ to the rectangle A, C; and the square of E to the reciangle ${ }^{b} D, F$; therefore the ratio of the
c 58 . dat.

- 54. dat.
.
e 65. dat. square of B to the square of E is given; whercfore ${ }^{c}$ also the ratio of the straight line B to E is given.

Next, let the ratio of A to D, and of B to E, be given; then the ratio of C to F is also given.

Because the ratio of B to E is given, the ratio of the square of B to the square of E is givend ; therefore ${ }^{\mathrm{b}}$ the ratio of the rectangle A, C to the rectangle D, F is given; and the ratio of the side A to the side D is given; therefore the ratio of the other side C to the other F is givene.

COR. And if the extremes of four proportionals have to the extremes of four other proportionals given ratios, and one of the means a given ratio to one of the means; the other mean shall have a given ratio to the uther mean, as may be shewn in the same mamer as in the foregoing proposition.

DATA.

PROP. LXXII.

IIF four straight lines be proportionals; as the first is to the straight line to which the second has a given ratio, so is the third to a straight line to which the fourth has a given ratio.

Let A, B, C, D be four proportional straight lines, viz. as A to B, so C to D; as A is to the straight line to which B has a given ratio, so is C to a straight line to which D has a given ratio.

- Let E be the straight line to which B has a given ratio, and as B to E, so make D to F : The ratio of B to E is given ${ }^{2}$, and therefore the ratio of D to F; and because as A to B, so is C to D; and as B to E, so D to F; therefore, ex æquali, as A to E, so is $A B E$ C to F; and E is the straight line to which B has a C D F given ratio, and F that to which D has a given ratio; therefore as A is to the straight line to which B has a given ratio, so is C to a line to which D has a given ratio.

> PR'OP. LXXIII.

IF four straight lines be proportionals ; as the first see N. is to the straight line to which the second has a given ratio, so is a straight line to which the third has a given ratio to the fourth.

Let the straight line A be to B, as C to D; as A to the straight line to which B has a given ratio, so is a straight line to which C has a given ratio to D .

Let E be the straight line to which B has a given ratio, and as B to E, so make F to C; because the satio of B to E is given, the ratio of C to F is given: And because A is to B, as C to D; and as B to E, so F to C : therefore, ex æquali, in proportione perturbato ${ }^{2}, A$ is to E, as F to D; that is, A is to E to which B has a given ratio, as F, to which C has a given ratio, is to D .

PROP. LXXIV.

IF a triangle has a given obtuse angle ; the excess of the square of the side which subtends the obtuse angle, above the squares of the sides which contain it, shall have a given ratio to the triangle.

Let the triangle $A B C$ have a given obtuse angle $A B C$; and produce the straight line $C B$, and from the point A draw $A D$ perpendicular to $B C$: The excess of the square of $A C$ above the squares of $A B, B C$, that is ${ }^{2}$, the double of the rectangle contained by DB, BC, has a given ratio to the triangle ABC .

Because the angle $A B C$ is given, the angle $A B D$ is alsogiven; and the angle $A D B$ is given; wherefore the triangle $A B D$ is given ${ }^{b}$ in species; and therefore the ratio of $A D$ to $D B$ is given: And as $A D$ to $D B$, so isc the rectangle $A D, B C$ to the rectangle DB, BC; whercfore the ratio of the rectangle AD, BC to the reftangle DB, BC is given, as also the ratio of twice the rectangle DB, BC to the rectangle $A D, B C$: But the ratio of the rectangle $A D, B C$ to the triangle $A B C$

$$
0
$$ is given, because it is doubled of the triangle; therefore the ratio of twice the rectargle DB, BC to the triangle ABC is

-9. dat. givenc; and twice the rectangle.DB, BC
 is tile excess ${ }^{2}$ of the square of $A C$ above the squares of $A B$, $B C$; therefore this excess has a given ratio to the triangle ABC.

And the ratio of this excess to the triangle $A B C$ may be found thus: Take a straight line EF given in position and magnitude; and because the angle $A B C$ is given, at the point F of the straight line EF , make the angle EFG equal to the angle ABC ; produce Gr , and draw EH perpendicular to FG ; then the ratio of the excess of the square of AC above the squares of $A B, B C$ to the iriangle $A B C$, is the same with the ratio of quadruple the straight line HF to HE .

Because the angle $A B D$ is equal to the angle EFH, and the angle ADB to EHF , each being a right angle : the tri-
f.6.
${ }^{8}$ Cor. 4.5. so FH to HE ; and as quadruple of BD to DA , so is 8 quadruple of FH to HE: But as twice BD is to DA, so ise twice the rectangle DB, BC o the rettangle AD, BC; and as DA to the halt of it, so is ${ }^{\text {b }}$ the rectangle $A D, B C$ to its half the triangle

DATA.

triangle ABC ; therefore, ex æquali, as twice BD is to the half of $D A$, that is, as quadruple of $B D$ is to $D A$, that is, as quadruple of FH to HE , so is twice the rectangle DB, BC to the triangle ABC .

> PROP. LXXV.

IF a triangle has a given acute angle, the space by which the square of the side subtending the acute angle is less than the squares of the sides which contain it, shall have a given ratio to the triangle.

Let the triangle $A B C$ have a given acute angle $A B C$, and draw AD perpendicular to BC , the space by which the square of $A C$ is less than the squares of $A B, B C$, that is ${ }^{2}$, the double $=13 . \Omega$. of the rectangle contained by CB, BD, has a given ratio to the triangle ABC .

Because the angles $\mathrm{ABD}, \mathrm{ADB}$ are each of them given, the eriangle ABD is given in species; and therefore the ratio of BD to DA is given: And as BD to DA , so is the rectangle CB, BD to the rectang!e $C B, A D$: Therefore the ratio of these rectangles is given, as also the ratio of twice the rectangle CB, BD, to the rectangle CB, AD, but the rectangle CB, AD has a given ratio to its half the triangle $\mathrm{A} B \mathrm{C}$: Therefore ${ }^{\mathrm{b}}$ the
 ratio of twice the rectangle CB, BD to the triangle ABC is given: and twice the rectangle CB, BD is ${ }^{2}$ the space by which the square of $A C$ is less than the squares of $A B, B C$; therefore the ratio of this space to the triangle $A B C$ is given : And the ratio may be found as in the preceding proposition.

LEMMA.

IF from the vertex A of an isosceles triangle $A B C$, any straight line $A D$ bedrawn to the base $B C$, the square of the side $A B$ is equal to the rectangle $B D, D C$ of the segments of the base together with the square of $A D$; but if $A D$ be drawn to the base produced, the square of AD is equal to the rectangle $B D, D C$, together with the square of $A B$.

Case 1. Bisect the base BC in E, and join ΛE, which will be perpendicular ${ }^{2}$:o $B C$; wherefore the square of $A B$ is equal ${ }^{\text {b }}$ to the squares of AE, EB; but the square of EB is equai* to the restangle BD, DC together with the square of DE ; therefore the square of $A B$ is equal to the

-8.1.
-47. 1.
c 7.2.
squares
squares of $A E, E D$, that is, to ${ }^{b}$ the square of $A D$, together with the rectangle BD, DC; the other case is shewn in the same way by 6. 2. Elem.
67.

IPROP. LXXVI. F a triangle have a given angle, the excess of the square of the straight line which is equal to the two sides that contain the given angle, above the square of the third side, shall have a given ratio to the triangle. , Let the triangle $A B C$ have the given angle $B A C$, the excess of the square of the straight line which is equal to BA, AC together above the square of $B C$, shall have a given ratio to the triangle $A B C$.

Produce $B A$, and take $A D$ equal to $A C$, join $D C$, and produce it to E , and through the point B draw BE parallel to $A C$; join AE, and draw AF perpendicular to DC; and because $A D$ is equal to $A C, B D$ is equal to $B E$; and $B C$ is drawn from the vertex B of the isoseeles triangle DBE ; therefore, by the Lemma, the square of $13 D$, that is, of $B A$ and AC together, is equal to the rectangle $D C, C E$ together with the square of BC ; and therefore the square of BA, AC together, that is, of BD , is greater than the square of $B C$ by the rectangle $D C$, CE; and this rectangle has a given ratio to the triangle $A B C$, because the angle BAC is given, the adjacent angle. $C A D$ is given; and each of the angles $\mathrm{ADC}, \mathrm{DCA}$ is given, for

* 5. \& 32. each of them is the halfa of the given angle BAC ; therefore, the triangle ADC is givenb in species; and $A F^{\circ}$ is
 drawn from its vertex to the base in
e 50. dat.
d 1.6.
e 41.1.
© 37. 1.

69. đat. a given angle; wherefore the ratio of $A F$ to the base $C D$ is given ${ }^{c}$ and as CD to AF , so is ${ }^{\alpha}$ the rectangle DC, CE to the rectangle AF, CE; and the ratio of the rectangle AF , CE to its halfe, the triangle $A C E$, is given; therefore the ratio of the rectangle $\mathrm{DC},{ }^{\circ} \mathrm{CE}$ to the triangle ACE , that is ${ }^{\text {, }}$ to the triangle $A B C$, is givens ; and the rectangle $D C, C E$ is the excess of the square of BA, AC, together above the square of $B C$: Therefore the ratio of this excess to the triangle ABC is given.

The ratio which the rectangle DC, CE, has to the triangle ABC is found thus: Take the straight lime HG given in posi-
tion and magnitude, and at the point G in $G H$ make the angle HGK equal to the given angle CAD, and take GK equal to GH, join KH, and draw GL perpendicular to it: Then the ratio of HK to the half of GL is the same with the satio of the rectangle $D C, C E$ to the triangle o BC : Because the angles HGK, DAC, $2 t$ the vertices of the isosceles triangles $G I K$, ADC , are equal to one another, these triangles are similar; and because GL, AF, are perpendicular to the bases HK, DC, as $H K$ to $G L$, so is ${ }^{\prime}$ (DC to AF , and so is) the rectangle $\approx\left\{\begin{array}{l}4.6 . \\ 2.5 \text {. } . ~ . ~\end{array}\right.$ $D C, C E$ to the rectangle $A F, C E$; but as GL to its half, so is the rectangle AF, CE to its half, which is the triangle ACE , or the triangle ABC ;- therefore, ex zquali, HK is to the half of the straight line GL, as the rectangle DC, CE, is to the triangle ABC .

Cor. And if a triangle have a given angle, the space by which the square of the straight line, which is the difference of the sides which contain the given angle, is less than the square of the third side, shall have a given ratio to the triangle. This is demonstrated the same way as in the preceding proposition, by help of the second case of the Lemma.

PROP. LXXVII.
TF the perpendicular drawn from a given angle of a See A . triangle to the opposite side, or base, has a given ratio to the base, the triangle is given in species.

Let the triangle ABC have the given angle BAC , and let the perpendicular AD drawn to the base BC , have a given ratio to it, the triangle ABC is given in species.

If $A B C$ be an isosceles triangle, it is evident ${ }^{2}$, that if any $=5 . k 3$.

one of its angles be given, the rest are also given; and therefore the triangle is given in species, without the consideration of the ratio of the perpendicular to' the base, which in this case is given by Prop. 50 .

But when ABC is not an isosceles triangle, take any straight line EF given in position and magnitude, and upon it describe

$$
\text { Ee } 3 \text { the }
$$

the segment of a circle EGF, containing an angle equal to the given angle BAC , draw GH bisecting EF at right angles, and join EG, GF : Then, since the angle EGF is equal to the angle $B A C$, and that $E G F$ is an isosceles triangle, and $A B C$ is not the angle FEG is notequal to the angle CBA: Draw EL making the angle FEL equal to the angle CBA; join FL, and draw LM perpendicular to EF; then because the triangles ELF BAC are equiangular, as also are the triangles MLE, DAB, as ML to LE, so is DA to $A B$; and as LE to EF, so is $\triangle B$ to BC ; wherefore, ex æquali, as LM to EF , so is AD to BC ; and because the ratio of AD to BC is given, therefore the ratio of LM to EF is given ; and JF is given, wherefore ${ }^{b} \mathrm{LM}$ also is given. Complete the parallelogram LMFK; and because LM is given, FK is given in magnitude; it is also given in position ; and the point F is given, and consequently ${ }^{c}$ the point K ; and because through K the straight line KL is drawn parallel to EF , which is given in position, therefore ${ }^{\mathrm{d}} \mathrm{KL}$ is given in position:

e 28. dat.
49. dat.
84. dat.
and the circumference ELF is given in position; therefore the point L is givene. And because the points, L, E, F, are given, the straight lines LE, EF, FL, are given ${ }^{f}$ in magnitude ; therefore the triangle LEF is given in species $\mathbf{g}^{\text {; }}$; and the triangle ABC is șimilar to LEF, wherefore also ABC is given in species.

Because LM is less than GH, the ratio of LM to EF, that is, the given ratio of AD to BC , must be less than the ratio of GH to EF, which the straight line, in a segment of a circle containing an angle equal to the given angle, that bisects the base of the segment at right angles, has unto the base.

Cor. i. If two triangles, $A B C, L E F$ have one angle $B A C$ equal to one angle EIF, and if the perpendicular $A D$ be to the base BC , as the perpendicular LM to the base EF , the triangles $A B C$, LEF are similar.

Describe the circle F.GF about the triangle ELF, and draw LN parallel to EF, join EN, NF, and draw NO perpendicu. lar'to EF ; because the angles ENF, ELF are equal, and that the
the angle EFN is equal to the alternate angle FNL, that is, to the angle FEL in the same segment ; therefore the triangle NEF is similar to LEF ; and in the segment EGF there can be no other triangle upon the base F.F, which has the ratio of its perpendicular to that base the same with the ratio of LM or NO to EF, because the perpendicular must be greater or less than LM or NO ; but, as has been shewn in the preceding demonstration, a triangle, similar to ABC , can be described in the segment EGr upon the base EF, and the ratio of its perpendicular to the base is the same, as was there shewn, with the ratio of AD to BC , that is, of LM to EF ; therefore that triangle must be either LEF, or NEF, which therefore are similar to the triangle ABC .

Cor. 2. If a triangle ABC has a given angle BAC , and if the straight line $A R$ drawn from the given angle to the opposite side $B C$, in a given angle $A R C$, has a given ratio to $B C$, the triangle $A B C$ is given in species.

Draw AD perpendicular to BC ; therefore the triangle $A R D$ is given in species; wherefore the ratio of $A D$ to $A R$ is given: and the ratio of $A R$ to $B C$ is given, and consequently ${ }^{\text {A }} 9$. dat. the ratio of $A D$ to $B C$ is given; and the triangle $A B C$ is therefore given in species ${ }^{\text {i }}$.

Cor. 3. If two triangles $A B C$, LEF have one angle BAC equal to one angle ELF, and if straight lines drawn from these angles to the bases, making with them given and equal. angles, have the same ratio to the bases, each to each ; then the triangles are similar; for having drawn perpendiculars to the bases from the equal angles, as one perpendicular is to its base, so is the other to its basek; wherefore, by Cor. I. the ${ }^{*}\left\{\begin{array}{l}4.6 . \\ 22.5\end{array}\right.$ triangles are similar.

A triangle similar to $A B C$ may be found thus: Having described the segment EGF , and drawn the straight line GH as was dire Zted in the proposition, find FK, which has to EF the given ratio of $A D$ to $B C$; and place $F K$ at right angles to EF from the point F; then because, as has been shewn, the ratio of AD to BC, that is, of FK to EF, must be less than the ratio of GH to EF; therefore FK is less than GH; and consequently the parallel to EF draiwn through the point K , must meet the circumference of the segment in two points: Let L be either of them, and join EL, LF, and draw LM perpendicular to EF : then, because the angle BAC is equal to the angle ELF, and that $A D$ is to $B C$, as KF ; that is, LM to EF, the triangle $\AA B C$ is similar to the triangle LEF, by Cor. I.
E e4

EUCLID'S

80.

PROP. LXXVIII.

IF a triangle have one angle given, and if the ratio of the rectangle of the sides which contain the given angle to the square of the third side be given, the triangle is given in species.

Let the triangle $A B C$ have the given angle $B A C$, and let the ratio of the rectangle $B A, A C$ to the square of $B C$ be given; the triangle ABC is given in species.

From the point A, draw $A D$ perpendicular to $B C$, the rectangle $A D, B C$ has a given ratio to its half the triangle $A B C$; and because the angle BAC is given, the ratio of the triangle BAC to the rectangle BA, AC is given ${ }^{\text {b }}$; and by the hypothesis, the ratio of the rectangle $B A, A C$ to the square of $B C$ is given; therefore ${ }^{c}$ the ratio of the rectangle $A D, B C$ to the square of $B C$, that is ${ }^{d}$, the ratio of the straight line $A D$ to $B C$ is given; wherefore the triangle ABC is given in speciese.

A triangle similar to $A B C$ may be found thus: Take a straight line EF given in position and magnitude, and make the angle FEG equal to the given angle BAC, and draw FH perpendicular to $E G$, and $B K$ perpendicular to $A C$: therefore the triangles $\mathrm{ABK}, \mathrm{EFH}$ are similar, and the rectangle AD, BC or the rectangle BK, AC which is equal to it , is to the rectangle BA, AC as the straight line BK to BA ,
 that is, as FH to FE. Let the given ratio of the rectangle BA, AC to the square of BC be the same with the ratio of the straight line EF to FL ; therefore, ex æquali, the ratio of the rectangle AD, BC to the square of $B C$, that is, the ratio of the straight line $A D$ to $B C$, is the same with the ratio of HF to FL; and because AD is not greater than the straight line MN in the segment of the circle described about the triangle $A B C$, which biscets $B C$ at right angles; the ratio of AD to BC , that is, of HF to FL , must not be greater than the ratio of MN to BC : Let it be so; and, by the 77 th dat. find a triangle OPQ which has one of its angles POQ equal to the given angle $B A C$, and the ratio of the perpendicular OR, drawn from that angle to the base PQ , the same with the ratio of HF to FL ; then the triangle ABC is similar to

> D A T A.

OPQ : Because, as has been shewn, the ratio of $A D$ to $B C$ is the same with the ratio of (HF to FL, that is, by the construction, with the ratio of $O R$ to $P Q$; and the angle BAC is equal to the angle $P O Q$. Therefore the triangle $A B C$ is similar ${ }^{f}$ to the triairgle POQ.

Otherwise,

Let the triangle $A B C$ have the given angle $B A C$, and let the ratio of the rectangle $B A, A C$ to the square of $B C$ be given; the triangle $A B C$ is given in species.

Because the angle BAC is given, the excess of the square of both the sides $B A, A C$ together above the square of the third side $B C$ has a giveh ${ }^{2}$ ratio to the triangle $A B C$. Let the a 76 . dato figure D be equal to this excess; therefore the ratio of D to. the triangle $A B C$ is given; and the ratio of the triangle $A B C$ to the rectangle $B A, A C$ is given ${ }^{\text {b }}$, because $B A C$ is a given angle ; and the rectarigle BA, AC has a given ratio to the square of $B C$; wherefore ${ }^{c}$ the ratio of D to the square of $B C$ is given ; and, by compositiond, the ratio of the space $D, 3$
 but D together with the square of BC is equal to the square of both $B A$ and $A C$ together ; therefore the ratio of the square of $B A, A C$ together to the square of $B C$ is given; and the ratio of BA, AC together to BC is therefore givene; and the angle $B A C$ is given, wherefore the triangle $A B C$ is given in species.

The composition of this, which depends upon those of the 7 th and 48 th propositions, is more complex than the preceding composition, which depends upon that of Prop. 77. which is easy.

PROP. LXXIX.

- Cor. Cl dat.
' 10. dat. -

E UCLID'S

a given ratio to one another; the triangle $\triangle B C$ is given in species
2. 5.4 .
-20.3.
44. dal.
© 7.dat.
e9. dat.

Describe the circle BAC about the triangle, and from its centre E, draw EA, EB, EC, ED; because the angle BAC is, given, the angle BEC at the centre, which is the double of it, is given. And the ratio of BE to EC is given, because they are equal to one another; therefore the ${ }^{c}$ triangle BEC is given in species, and the ratio of $E B$ to $B C$ is given; also the ratio of $C B$ to $B D$ is givend, because the ratio of $B D$ to $D C$ is given ; therefore the ratio of EB to BD is givene, and the angle EBC is given, wherefore the triangle EBD is givene in species, and the ratio of $E B$, that is, of $E A$, to $E D$, is therefore given; and the angle EDA is given, because each of the angles $\mathrm{BDE}, \mathrm{BDA}$ is given; therefore the triangle AED is given ${ }^{f}$ in species, and the angle AED given : also the angle DEC is given, because each of the angles BED, BEC is given ; therefore the angle AEC is given, and the ratio of EA to EC, which are equal, is given; and the triangle AEC is therefore givenc in species, and the angle ECA is given; and the angle ECB is given,
 wherefore the angle $A C B$ is given, and the angle $B A C$ is also given ; therefores the triangle ABC is given in species.

A triangle similar to ABC may be found, by taking a straight line given in position and magnitude, and dividing it in the given ratio which the segments BD, DC are required to have to one another; then, if upon that straight line a segment of a circle be described containing an angle equal to the given angle BAC, and a straight line be drawn from the point of division in an angle equal to the given angle $A D B$, and from the point where it meets the circumference, straight lines be drawn to the extremity' of the first line, these, together with the first line, shall contain a triangle similar to ABC , as may easily be shewn.

The demonstration may be also made in the manner of that of the $77^{\text {th }}$ Prop. and that of the 77 th may be made in the manmer of this.

IF the sides about an angle of a triangle have a given ratio to one another, and if the perpendicular drawn from that angle to the base has a given ratio to the base ; the triangle is given in species.

Let the sides BA, AC, about the angle BAC of the triana gle ABC have a given ratio to one another, and let the perpendicular AD have a given ratio to the base BC , the triangle ABC is given in species.

First, let the sides $A B, A C$ be equal to one another, therefore the perpendicular AD bisects ${ }^{2}$ the base BC ; and the ratio of AD to BC , and sherefore to its half DB , is given; and the angle ADB is given ; wherefore the triangle* A B D and consequently the triangle $A B C$ is given ${ }^{\text {b }}$ in species.

But let the sides be unequal, and BA be greater than AC ; and make the angle CAE equal to the angle $A B C$; because the angle $A E B$ is common to the triangles $A E B, C E A$, they are similar ; therefore as AB to BE , so is CA to AF , and, by permutation, as BA to AC , so is BE to EA, and so is EA to EC ; and the ratio of BA to AC is given, therefore the ratio of BE to EA , and the ratio of EA to EC, as also the ratio of BE to EC is givenc ; wherefore the ratio of EB to 9 . dat. $B C$ is given ${ }^{\text {d }}$; and the ratio of $A D$ to $B C$ is given by the hypothesis, thereforec the ratio of AD to BE is given; and the ratio of $B E$ to EA was shewn to be given; wherefore the ratio of $A D$ to $E A$ is given;
 and ADE is a right angle, therefore the triangle ADE is givene in species, and the angle AEB given; the ratio of BE to EA is likewise given, therefore ${ }^{\mathrm{b}}$ the trian- ${ }^{\text {e }} 46$. dat. gle $A B E$ is given in species, and consequently the angle $E A B$, as also the angle $A B E$, that is, the angle $C A E$ is given; therefore the angle $B \Delta C$ is given, and the angle $A B C$ being also given, the triangle $A B C$ is given ${ }^{〔}$ in species.
f43. dat.

How to find a triangle which shall have the things which are mentioned to be given in the proposition, is evident in the first case; and to find it the more easily in the other case, it is to be observed that, if the straight line EF equal to EA be placed in EB towards B, the point F divides the base BC into the segments BF, FC, which have to one another the ratio of the sides $13 \mathrm{~A}, \mathrm{CA}$, because BE, EA, or EF, and *19.5. EC, were shown to be proportionals, therefore* BF is to FC, as BE to EF , or EA , that is, as BA to AC ; and AE cannot be less than the altitude of the triangle ABC , but it may be

E UCLID'S

equal to it, which, if it be, the triangle, in this case, as also the ratio of the sides, may be thus found : Having given the ratio of the perpendicular to the base, take the straight line

- GH, given in position and magnitude, for the base of the triangle to be found; and let the given ratio of the perpendicular to the base be that of the straight line K to GH , that is, let K be equal to the perpendicular; and suppose GLH to be the triangle which is to be found, therefore having made the angle HLM equal to LGH , it is required that LM be perpendicular to GM, and equal to K ; and because GM , ML, MH are proportionals, as was shewn of BE, EA, EC, the rectangle GMH is equal to the square of ML. Add the common square of NH (having bisected GH in N) and the square of NM is equals to the squares of the given straight lines NH and $M L$; or K ; therefore the square of $N M$, and its side NM is given, as also the point M, viz. by taking the straight line NM , the square of which is equal to the squares of NH , ML. Draw ML equal to K, at right angles to GM ; and because ML is given in position and magnitude, therefore the point L is given, join LG, LH ; then the triangle LGH is that which was to be found; for the square of NM is equal to the squares of NH and ML , and taking away the common square of NH , the rectangle GMH is equalb to the square of ML ; therefore as GM to ML, so is ML to MH, and the triangle LGM is ${ }^{\text {h }}$ therefore equiangular to HLM, and the angle HLM equal to the angle LGM, and the
 straight line LM, drawn from the vertex of the triangle making the angle HLM equal to LGH, is perpendicular to the base and equal to the given straight line K, as was required; and the ratio of the sides GL, LH, is the same with the ratio of GM to ML, that is, with the ratio of the straight line which is made up of GN, the half of the given base and of NM, the square of which is equal to the squares of GN and K , to the straight line K .
And whether this ratio of GM to ML is greater or less than the ratio of the sides of any other triangle upon the base GH, and of which the altitude is equal to the straight line K ,
that is, the vertex of which is in the parallel to GH drawn through the point L, may be thus found. Let OGH be any such triangle, and draw OP , making the angle HOP equal to the angle OGH; therefore, as before, GP, PO, PH are proportionals, and PO cannot be'equal to LM, because the rectangle GPH would be equal to the rectangle GMH, which is impossible; for the point P cannot fall upon M , because O would then fall on L ; nor can PO be less than LM, therefore it is greater; and consequently the rectangle GPH is greater than the rectangle GMH, and the straight line GP greater than GM: Therefore the ratio of GM to MH is greater than the ratio of GP to PH, and the ratio of the square of GM to the square of $M L$ is therefore ${ }^{i}$ greater than the ratio of the square of GP to the square of PO , and the ratio of the straight line GM to ML greater than the ratio of GP to PO. But as GMI to ML, so is GL to LH; and as GP to PO, so is GO to OH ; therefore the ratio of GL to LH is greater than the ratio of GO to OH ; wherefore the ratio of GL to LH is the greatest of all others; and consequently the given ratio of the greater side to the less must not be greater than this ratio.

But if the ratio of the sides be not the same with this greatest ratio of GM to ML, it must necessarily be less than it: Let any less ratio be given, and the same things being supposed, viz. that GH is the base, and K equal to the alttude of the triangle, it may be found as follows: Divide GH in the point Q, so that the ratio of GQ to QH may be the same with the given ratio of the sides; and as GQ to QH , so make GP to PQ and so will ${ }^{5} \mathrm{PQ}$ be to PH ; wherefore the square of GP is to the square of $P Q$ as ${ }^{i}$ the straight line GP to $\mathrm{PH}: ' 19.5$. And because GM, ML, MH are proportionals, the square of GM is to the square of ML , as ${ }^{i}$ the straight line GM to MH : But the ratio of GQ to $Q H$, that is, the ratio of GP to $P Q$, is less than the ratio of G.M to ML; and therefore the ratio of the square of $G P$ to the square of $P Q$ is less than the ratio of the square of GM to that of ML; and consequently the ratio of the straight line GP to PH is less than the ratio of GM to MH ; and, by division, the ratio of GH to HP is less than that of GH to HM; wherefore ${ }^{\mathrm{k}}$ the straight line HP is $\mathrm{k}^{2} 10.5$. greater than HM, and the rectangle GPH, that is, the square of $P Q$, greater than the rectangle GMH, that is, than the square of $M L$, and the straight line $P Q$ is therefore greater

E U C LI D'S

than ML. Draw LR parallel to GP, and from P draw PR at right angles to GP. Because $P Q$ is greater than $M L$, or $P R$, the circle described from the centre P, at the distance $P Q$, must necessarily cut LR in two points; let these be OS, and join OG, OH; SG, SH: each of the triangles OGH, $\subseteq \mathrm{GH}$ have the things mentioned to be given in the proposition: Join OP, SP; and because as GP to $P \mathrm{R}$, or PO , so is PO to PH , the triangle OGP is equiangular to HOP ; as, there. fore, OG to GP, so is HO to OP ; and, by permutation, as GO to OH , so is GP to PO, or PQ ; and so is GQ to QH : Therefore the triangle OGH has the ratio of its sides GO, OH, the same, with the given ratio of $G Q$ to QH : and the perpendicular has to the base the given ratio of K to GH , because the perpendicular is equal to LM, or K : The like may be shewn in the same way ot the triangle SGH.

This construction by which the criangle OGH is found, is shorter than that which would be deduced from the demonstration of the datum, by reason that the base GH is given in position and magnitude, which was not supposed in the demonstration: The same thing is to be observed in the next proposition.

PROP. LXXXI.

I F the sides about an angle of a triangle be unequal, and hare a giren ratio to one another, and if the perpendicular from that angle to the base divides it into segments that have a given ratio to one another, the triangle is given in species.

- Let ABC be a triangle, the sides of which about the angle BAC are unequal, and have a given ratio to one another, and let the perpendicular $A D$ to the base $B C$ divide it into the segments BD, DC, which have a given ratio to one another, the triangle $A B C$ is given in species.
4 Let $A B$ be greater than $A C$, and make the angle CAE equal to the angle $A B C$; and because the angle $A E B$ is common to the triangles $\mathrm{ABE}, \mathrm{CAE}$, they are ${ }^{2}$ equiangular to one another: Therefore as $A B$ to $B E$, so is CA to $A E$, and,

D ATA.
by permutation, as $A B$ to $A C$, so $B E$ to EA, and so is EA to EC: But the ratio of BA to AC is given, therefore the ratio of BE to EA, as also the ratio of EA to $E C$ is given; wherefore ${ }^{b}$ the ratio of BE to EC, as also the ratio of EC to $C B$ is given : And the ratio of $B C$ to $C D$ is givend, because the ratio of BD to DC is given; therefore the ratio of EC to CD is given, and consequentlyd the
 ratio of $D E$ to $E C$: And the ratio of EC to EA was shewn to be given, therefore ${ }^{b}$ the ratio of DE to EA is given : And ADE is a right angle, wherefore the triangle $A D E$ is given in species, and the angle $A E D$ given; And the ratio of CE to EA is given, therefore ${ }^{f}$ the triangle $444 . \mathrm{dat}$. AEC is given in species, and consequently the angle $A C E$ is given, as also the adjacent angle ACB . In the same manner, because the ratio of BE to EA is given, the triangle BEA is given in species, and the angle $A B E$ is therefore given: And the angle $A C B$ is given; wherefore the triangle $A B C$ is givens in species.

But the ratio of the greater side $B A$ to the other $A C$ must be less than the ratio of the greater segment BD to DC : Because the square of $B A$ is to the square of $A C$, as the squares of BD, DA to the squares of DC, DA; and the squares of $B D, D A$ have to the squares of DC, DA, a less ratio than the square of BD has to the square of $\mathrm{DC}+$, because the square of $B{ }^{\circ} \mathrm{D}$ is greater than the square of DC ; therefore the square of BA has to the square of AC a less ratio than the square of BD has to that of DC : And consequently the ratio of BA to $A C$ is less than the ratio of $B D$ to $D C$.

This being premised, a triangle which shall have the things mentioned to be given in the proposition, and to which the iriangle $\Lambda \mathrm{BC}$ is similar, may be found thus: Take a straight line GH given in position and magnitude, and divide it in K , so that the ratio of GK to KH may be the same with the given ratio of BA to AC : Divide also GH in L , so that the ratio

[^16]of GL to LH may be the same with the given ratio of BD to DC, and draw LM at right angles to GH : And because the ratio of the sides of a triangle is less than the ratio of the segments of the base, as has been shewn, the ratio of GK to KH is less than the ratio of GL to LH ; wherefore the point L must fall betwixt K and H : Also make as GK to KH, so GN to NK, and so shall ${ }^{\text {h }}$ NK be to NH. And from the centre N, at the distance NK, describe a circle, and let its circumference meet LM in O , and join OG, OH; then OGH is the triangle which was to be described; Because GN is to NK, or NO, as NO to NH , the triangle OGN is equiangular to HON ; therefore as OG to GN, so is HO to ON, and, by permutation, as GO to OH, so is GN to NO, or NK, that is, as GK to KH , that is, in the given ratio of the sides, and by the construction, GL, LH have to one another the given ratio of the segments of the base.

PROP. LXXXII.

IfF a parallelogram given in species and magnitude be increased or diminished by a gnomon given in magnitude, the sides of the gnomon are given in magnitude.

First, Let the parallelogram AB given in species and magnitude be increased by the given gnomon ECBDFG, each of the straight lines CE, DF is given.

Because $A B$ is given in species and magnitude, and that the gnomon ECBDFG is given, therefore the whole space AG is given in magnitude : But AG is also given in species, be- cause it is similar ${ }^{2}$ to $A B$; therefore the sides of $A G$ are given ${ }^{\text {b }}$: Each of the straight lines AE, AF is therefore given; and each of the straight lines CA, AD is given ${ }^{\text {b }}$, thercfore each of
c4. dat. the remainders EC, DF is given ${ }^{\text {c }}$.

Next, let the parallelogram AG given in species and inagnitude, be diminished by the
 given gnomon ECBDFG, each of the straight lines $C E, D F$ is given.

Because the parallelogram AG is given, as also its gnomon ECBDFG, the remaining space AB is given in magnitude :
magnitude : But it is also given in species; because it is similar ${ }^{2}$, ${ }^{\text {2. def. }}$ to AG ; therefore ${ }^{\mathrm{b}}$ its sides CA, AD are given, and each of ${ }^{3}\left\{\begin{array}{l}2, \text { and } \\ 24.6\end{array}\right.$ the straight lines EA, AF is given ; therefore EC, DF are ${ }^{\circ} \mathrm{E} 0$. dat. each of them given.

The gnomon and its sides CE, DF may be found thus in the first case. Let H be the given space to which the gnomon must be made equal, and find ${ }^{d}$ a parallelogram similar to $A B{ }^{d} 25.6$. and equal to the figures $A B$ and H together, and place its sides $A E, A F$ 'from the point A, upon the straight lines $A C, A D$, and complete the parallelogram AG which is about the same diametere with $A B$; because therefore $A G$ is equal to both ${ }^{\text {e } 26.6 .}$ $A B$ and H, take away the common part $A B$, the remaining gnomon ECBDFG is equal to the remaining figure H ; therefore a gnomon equal to H , and its sides CE, DF are found: And in like manner they may be found in the other case, in which the given figure H must be less than the figure FE from which it is to be taken.

> PROP. LXXXIII.
53.

IF a parallelogram equal to a given space be applied to a given straight line, deficient by a parallelogram given in species; the sides of the defect are given.

Let the parallelogram AC equal to a given space be applied to the given straight line $A B$, deficient by the parallelogram $B D C L$ given in species, each of the straight lines $C D, D B$ are given.

Bisect $A B$ in E; therefore $E B$ is given in magnitude; upon EB describe the parallelogram EF similar to DL and simi- ${ }^{\text {a }} 13.6_{e}$ larly placed ; therefore EF is given in species, and is about the same diameter ${ }^{\text {b }}$ with DL ; let BCG be the diameter, and construct the figure; therefore, because the figure EF given in species is described upon the given straight line EB, EF is given in magnitude, and the gnomon ELH is equald to the given figure
 AC ; therefore since EF is diminished by the given gnomon e 8 R . dat ELH , the sides $\mathrm{EK} ; \mathrm{FH}$ of the gnomon are given; but EK is equal to DC , and FH to BD ; wherefore CD, DB are each of them given.

EUCLID'S

This demonstration is the analysis of the problem in the 28th Prop of Book 6. the construction and demonstration of which proposition is the composition of the analysis; and because the given space AC, or its equal the gnomon ELH, is to be taken from the figure EF described upon the half of AB similar to BC , therefore AC must not be greater than EF , as is shewn in the 27 th Prop. B. 6.
59. PROP. LXXXIV.

IF a parallelogram equal to a given space be applied to a given straight line, exceeding by a parallelogram given in species; the sides of the excess are given.

Let the parallelogram AC equal to a given space be applied to the given straight line $A B$, exceeding by the parallelogram BDCL given in species ; each of the straight lines $C D, D B$ are given.

Bisect $A B$ in E; therefore $E B$ is given in magnitude: Upon
:18. 6.

- 26.6.
© 50. dat.
- 36. and

43. 44.

e 82 . dat. BE describe ${ }^{\text {a }}$ the parallelogram EF similar to LD , and similarly placed ; therefore EF is given in species, and is about the me diameter ${ }^{b}$ with LD. Let CBG be the diameter, and construct the figure : Therefore, because the figure EF given in species is described upon the given straight line EB, EF is given in agnitudec, and the gnomon ELH is equal
 to the given figured $A C$; wherefore, since EF is increased by the given gnomon ELH, its sides EK, FH are given ; but EK is equal to CD , and FH to BD , therefore CD, DB are each of them given.

This demonstration is the analysis of the problem in the 29th Prop. Book 6. the construction and demonstration of which is the composition of the analysis.

Cor. If a parallelogram given in species be applied to a given straight line, exceeding by a parallelogram equal to a given space; the sides of the parallelogram are given.

Let the parallelogram ADCE given in species be applied to the given straight line $A B$, exceeding by the parallelogram $B D C G$ equal to a given space; the sides AD, DC of the pasallelogralı are given.

Draw the diameter DE of the parallelogram AC , and construck the figure. Because the parallelogram AK is equal ${ }^{2}$ to ${ }^{2} 43 . \mathrm{i}$. BC which is given, therefore AK is given; and BK is similar ${ }^{\mathrm{b}}$ to AC , therefore BK is given in species. And since the parallelogram AK given in manitude is applied to the given straight line AB , exceeding by the parallelogram BK given in species, therefore by this pro-
 position, BD, DK the sides of the excess are given, and the straight line $A B$ is given; therefore the whole $A D$, as also $D C$, to which it has a given ratio is given.

PROB.
To apply a parallelogram similar to a given one to a given straight line $\hat{A} B$, exceeding by a parallelogram equal to a given space.

To the given straight line $A B$ apply c the parallelogram $A K$ c29.6. equal to the given space, exceeding by the parallelogram BK similar to the one given. Draw DF, the diameter of BK , and through the point A draw AE parallel to BF , meeting DF produced in E , and complete the parallelogram AC .

The parallelogram BC is equal ${ }^{2}$ to AK , that is, to the given space; and the parallelogram AC is similar ${ }^{\text {b }}$ to BK ; therefore the parallelogram AC is applied to the straight line AB similar to the one given and exceeding by the parallelogram $B C$ which is equal to the given space.

PROP. LXXXV.

IF two straight lines contain a parallelogram given in magnitude, in a given angle; if the difference of the straight lines be given, they shall each of them be given.
Let $A B, B C$ contain the parallelogram $A C$ given in magnitude, in the given angle ABC , and let the excess of BC above $A B$ be given; each of the straight lines $A B, B C$ is given.

Let $D C$ be the given excess of $B C$ above $B A$, therefore the remainder $B D$ is equal to BA. Complete the parallelogram AD; and because $A B$ is equal to $B D$, the ratio of $A B$ to $B D$ is given ; and the angle $A B D$ is given, therefore the parallelogram AD is
 given in species; and because the given parallelogram AC is applied to the given straight line DC, exceeding by the parallelogram $A D$ given in species, the sides of the excess are given ${ }^{2}$: ${ }^{8 \%}$. dat,
therefore BD is given ; and DC is given, wherefore the whole BC is given : and AB is given, therefore AB, BC are each of them given.
85.

PROP. LXXXVI.

IF two straight lines contain a parallelogram given in magnitude, in a given angle; if both of them together be given, they shall each of them be given.

Let the twostraight lines AB, BC contain the parallelogram $A C$ given in magnitude, in the given angle $A B C$, and let $A B$, $B C$, together be given; each ofthe straightlines $A B, B C$ is given.

Produce CB , and make DB equal to BA , and complete the parallelogram ABDE. Because DB is equal to BA , and the angle $A B D$ given, because the adjacent angle $A B C$ is given, the parallelogram $A D$ is given in species: And because $A B, B C$, together are given, and $A B$ is equal to $B D$; therefore DC is given: And because the given parallelogram $A C$ is applied to the given
 straight line DC, deficient by the parallelogram $A D$ given in species, the sides $A B, B D$ of the defeet are given ${ }^{2}$; and $D C$ is given, wherefore the remainder $B C$ is given ; and each of the straight lines AB, BC is therefore given.

PROP. LXXXVII.

IFF two straight lines contain a parallelogram given in magnitude, in a given angle; if the excess of the square of the greater above the square of the lesser be given, each of the straight lines shall be given.

Let the two straight lines $A B, B C$ contain the given parallelogram $A C$ in the given angle $A B C$; if the excess of the square of $B C$ above the square of $B A$ be given; $A B$ and $B C$ are each of them given.

Let the given excess of the square of BC above the square of BA be the redangle CB, BD; take this from the square
-2. 2. of $B C$, the remainder, which is ${ }^{2}$ the rectangle $B C, C D$ is equal to the square of $A B$: and because the angle $A B C$ of the parallelogram AC is given, the ratio of the rectangle of the sides AB, BC to the parallelogram AC is given ${ }^{\text {b }}$; and $A C$ is given, therefore the rectangle $A B, B C$ is given; and the rectangle CB, BD is given ; therefore the ratio of the rectangle
angle $C B, B D$ to the rectangle $A B, B C$, that is ${ }^{c}$, the ratio of ${ }^{c} 1.6$. the straight line DB to BA is given; therefore ${ }^{d}$ the ratio of ${ }^{\circ} 54$. dat. the square of DB to the square of BA is given: And the square of BA is equal to the rectangle BC, CD : wherefore the ratio of the rectangle BC, CD to the square of BD is given, as also the ratio of four timés the rectangle BC, CD to the square
 of BD ; and, by compositione, the ratio of four times the rectangle BC, CD together with the square of BD to the square of BD is given: But four times the rectangle $\mathrm{BC},{ }^{\prime} \mathrm{CD}$, together with the square of BD , is equal ${ }^{f}$ to the square of the straight ${ }^{f} \mathrm{~S} .2$. lines BC, CD taken together: therefore the ratio of the square of $B C, C D$, together to the square of $B D$, is given ; wherefore sthe ratio of the straight line $B C$, together with $C D$ to $B D$, is ${ }^{8} 58$. dat. given : And, by composition, the ratio of BC together with $C D$ and $D B$, that is, the ratio of twice $B C$ to $B D$, is given ; therefore the ratio of $B C$ to $B D$ is given, as also the ratio of the square of BC to the rectangle CB, BD : But the rectangle $C B, B D$ is given, being the given excess of the squares of $B C$, $B A$; therefore the square of $B C$, and the straight line $B C$, is given: And the ratio of, BC to BD , as also of BD to BA , has been shewn to be given; therefore ${ }^{h}$ the ratio of BC to BA is N. dat. given; and $B C$ is given, wherefore $B A$ is given.

The preceding demonstration is the analysis of this problem, viz.

A parallelogram $A C$, which has a given angle $A B C$, being given in magnitude, and the excess of the square of $B C$, one of its sides above the square of the other BA being given; to find the sides: And the composition is as follows:

Let EFG be the given angle to which the angle $A B C$ is required to be equal, and from any point E in FE , draw EG perpendicular to FG ; lèt the rectangle $£ G, G H$ be the given space to which the parallelogram AC is to be made equal ; and the rectangle HG, GL, be the given excess of the squares of BC, BA.

Take, in the straight line GE,
 GK equal to FE , and make GM double of GK ; join ML, and in GL produced, take LN equal to LM: Bisect GN in O , and between GH, GO find a mean proportional BC: As OG to GL , so make CB to BD ; and make the angle CBA equal

$$
\mathrm{Ff}_{3}
$$

to GFE, and as LG to GK, so make DB to BA, and complete the parallelogram $\mathrm{AC}: \mathrm{AC}$ is equal to the rectangle EG, GH, and the excess of the squares of CB, BA is equal to the rectangle HG, GL.

Because as CB to BD , so is $O G$ to GL , the square of CB is to the rectangle CB, BD as ${ }^{\text {a }}$ the rectangle HG, GO to the rectangle HG, GL; and the square of CB is equal to the rectangle HG, GO, because $\mathrm{GO}, \mathrm{BC}, \mathrm{GH}$, are proportionals; therefore the rectangle CB, BD is equal ${ }^{\text {b }} \mathrm{HG}, \mathrm{GL}$. And because as CB to BD , so is OG to GL ; twice CB is to BD , as twice OG, that is, GN to GL; and, by division, as BC together with CP is to $B D$, so is NL, that is, $L M$, to $L G$: Therefore ${ }^{c}$ the square of $B C$ together with $C D$ is to the square of $B D$, as the square of $M L$ to the square of LG: But the square of $B C$ and $C D$ together is equal ${ }^{d}$ to four times the rectangle BC, CD together with the square of BD ; therefore four times the rectangle $B C, C D$ together with the square of $B D$ is to the square of $B D$, as the square of $M L$ to the square of LG : And, by division, four times the rectangle BC, CD is to the square of BD , as the square of MG to the square of GL ; wherefore the rectangle $B C, C D$ is to the square of $B D$ as (the square of KG the half of MG to the square of GL , that is, as) the square of $A B$ to the square of $B D$, because as LG to GK, so DB was made to BA: Therefore the rectangle $B C, C D$, is equal to the square of $A B$. To each of these add the rectangle CB, BD, and the square of BC becomes equal to the square of AB, together with the rectangle CB, BD; therefore this rectangle, that is, the given rectangle HG, GL, is the excess of the squares of BC, AB. From the point A draw AP perpendicular to BC , and because the angle, ABF is equal to the angle $E F G$, the triangle $A B P$ is equiangula to EFG: And DB was made to BA, as LG to GK ; therefore as the rectangle CB, BD to CB, BA, so is the rectangle HG .

GL to HG, GK; and as the rectangle CB, BA to AP, B (so is (the straight line BA to AP, and so is FE or GK

EG, and so is) the rectangle HG, GK to HG, GE; therefore, ex æquali, as the rectangle CB, BD to AP, BC, so is the rectangle HG, GL to EG, GH : And the rectangle CB, BD is equal to HG, GL; therefore the rectangle AP, BC, that is, the parallelogram AC , is equal to the given rectangle EG, GH.

PROP. LXXXVIII.

IF two straight lines contain a parallelogram given in magnitude, in a given angle; if the sum of the squares of its sides be given, the sides shall each of them be given.

Let the two straight lines $A B, B C$ contain the parallelogram $A B C D$ given in'magnitude in the given angle $A B C$, and let the sum of the squares of $A B, B C$ be given; $A B, B C$ are each of them given.

First, let ABC be a right angle: and because twice the rectangle contained by two equal straight lines is equal to both their squares; but if two straight lines are unequal, twice the rectangle contained by them is less than the sum of their squares, as is evident from the 7th Prop. B. 2. Elem.; therefore twice
 the given space, to which space the rectangle of which the sides are to be found is equal, must not be greater than the given sum of the squares of the sides; And if twice that space be equal to the given sum of the squares, the sides of the rectangle must necessarily be equal to one another: Therefore in this case describe a square $A B C D$ equal to the given rectangle, and its sides $A B, B C$ are those which were to be found ; For the rectangle AC is equal to the given space, and the sum of the squares of its sides $A B, B C$ is equal to twice the rectangle $A C$, that is, by the hypothesis, to the given space to which the sum of the squares was required to be equal.

But if twice the given rectangle be not equal to the given sum of the squares of the sides, it must be less than it, as has been shown. Let $A B C D$ be the rectangle, join $A C$ and draw BE perpendicular to it, and complete the rectangle $A E B F$, and describe the circle $A B C$ about the triangle $A B C$; AC is its diameter ${ }_{\mathrm{a}}$: And because the triangle ABC is simi- ${ }^{\text {a }}$ Co. 5. 4. lar to $A E B$, as $A C$ to $C B$, so is $A B$ to $B E$; therefore the 8 . 6 . rectangle $A C, B E$ is equal to $A B, B C$; and the rectangle $A B$,

EUCLI D'S

$B C$ is given, wherefore $A C, B E$ is given: And because the sum of the squares of $A B, B C$ is given, the square of $A C$ which is
c47. 1. equale to that sum is given; and AC itself is therefore given in magnitude ; Let AC be likewise given in position, and the
32. dat. point A; therefore $A F$ is givend in position : And the rectangle AC, BE is given, as has been shewn, and $A C$ is ${ }^{-}$61, dat. given, wherefore ${ }^{e} B E$ is given in magnitude, as alsn AF which is equal to it; and AF is also given in position, and
${ }^{5} 30$. dat., the point A is given, whereforef the point F is given, and the straight line
31. dat. FB in position ${ }^{\text {g }}$: And the circumfe-

${ }^{n}$ 28. dat. rence $A B C$ is given in position, wherefore ${ }^{\text {h }}$ the point B is given : And the points A, C are given ; therefore the straight
${ }^{\text {12 }}$ 29. dat. lines $A B, B C$ are given ${ }^{1}$ in position and magnitude.
The sides $A B, B C$ of the rectangle may be found thus; Let the rectangle GH, GK be the given space to which the rectangle AB, BC is equal; and let GH, GL be the given rectangle to which the sum of the squares of $A B, B C$ is equal: Find ${ }^{\mathrm{k}}$ a square equal to the rectangle GH, GL : And let its side AC be given in position; upon AC as a diameter describe the semicircle $A B C$, and as $A C$ to $G H$, so make GK to $A F$, and from the point A place $A F$ at right angles to AC : There-
${ }^{1}{ }^{1}$ 16. 6. fore the rectangle CA, AF is equal ${ }^{1}$ to GH, GK; and, by the hypothesis, twice the rectangle GH, GK is less than GH , GL, that is, than the square of AC ; wherefore twice the rectangle CA, AF is less than the square of AC , and the rectangle CA, AF itself less than half the square of AC , that is, than the rectangle contained by the diameter AC and its half; wherefore AF is less than the semidiameter of the circle, and consequently the straight line drawn through the point F parallel to AC must meet the circumference in two points: Let B be either of them, and join $A B, B C$, and complete the rectangle $A B C D, A B C D$ is the rectangle which was to be found:
m 3. 1. Draw BE perpendicular to AC ; therefore BE is equal m to AF , and because the angle ABC in a semicircle is a right an-

- 8.6. gle, the rectangle $A B, B C$ is equal ${ }^{b}$ to $A C, B E$, that is, to the rectangle CA, AF which is equal to the given rectangle
=47. 1. GH, GK: And the squares of AB, BC are together equal ${ }^{\text {c }}$ to - the square of AC, that is, to the given rectangle GH, GL.

But if the given angle $A B C$ of the parallelogram $A C$ be not a right angle, in this case, because ABC is a given angle, the satio of the rectangle contained by the sides $\Lambda \mathrm{B}, \mathrm{BC}$ to the parallelogram
rallelogram AC is given ${ }^{3}$; and AC is given, therefore, the 262 . dat. rectangle $A B, B C$ is given: and the sum of the squares of $A B, B C$ is given: therefore the sides $A B, B C$ are given by the preceding case.

The sides AB, BC, and the parallelogram AG, may be found thus: Let EFG be the given angle of the parallelogram, and from any point E in FE draw $E G$ perpendicular to $F G$: and let the rectangle EG, FH be the given space to which the parallelogram is to be made equal, and let EF FK be the given rectangle to which the surn of the squares of the sides is to be equal. And, by the preceding case, find the sides of a rectangle which is equal to the given
 rectangle EF, FH , and the squares of the sides of which are together equal to the given rectangle EF, FK; therefore, as was shewn in that case, twice the rectangle EF, FH must not be greater than the rectangle EF, FK : let it be so, and let AB, BC be the sides of the rectangle joined in the angle $A B C$ equal to the given angle EFG,
 and complete the parallelogram $A B C D$, which will be that which was to be found: Draw AL perpendicular to BC, and because the angle $A B L$ is equal to EFG, the triangle $A B L$ is equiangular to EFG ; and the parallelogram AC , that is, the rectangle AL, BC, is to the rectangle AB, BC as (the straight line $A L$ to $A B$, that is, as $E G$ to EF , that is, as) the rectangle EG, FH to EF, FH; and, by the construction, the rectangle AB, BC is equal to EF, FH, therefore the rectangle AL , BC or, its equal, the parallelogram AC , is equal to the given rectangle EG, FH; and the squares of AB, BC are together equal, by construction, to the given rectangle EF, FK.

E U CLID'S

36.

PROP. LXXXIX.

IF two straight lines contain a given parallelogram in a given angle, and if the excess of the square of one of them above a given space, has a given ratio to the square of the other; cach of the straight lines shall be given.

Let the two straight lines AB, BC contain the given parallelogram $A C$ in the given angle $A B C$, and let the excess of the square of $B C$ above a given space have a given ratio to the square of $A B$, each of the straight lines $A B, B C$ is given.

Because the excess of the square of BC above a given space has a given ratio to the square of BA , let the rectangle CB , $B D$ be the given space; take this from the square of $B C$, the remainder, to wit, the rectangle BC, CD has a given ratio to the square of BA : Draw AE perpendicular to BC , and let the square of BF be equal to the rectangle BC, CD, then, because the angle ABC , as also BEA is given, the triangle $A B E$ is given ${ }^{\text {b }}$ in species, and the ratio of $\Lambda \mathrm{E}$ to AB is given: And because the ratio of the rectangle BC, CD, that is, of the square of BF to the square of BA , is given, the ratio of the straight line $B F$ to

c 58. dat.
"9.dat.
e 35.1 .
'87. dat. $B A$ is givenc and the ratio of $A E$ to $A B$ is given, wherefore ${ }^{3}$ the ratio of AE to BF is given; as also the ratio of the rectangle AE, BC, that is ${ }^{\mathrm{c}}$, of the parallelogram AC to the rectangle FB, BC; and AC is given, wherefore the rectangle FB , $B C^{\prime}$ is given. The excess of the square of BC above the square of BF , that is, above the rectangle BC, CD, is given, for it is equal ${ }^{2}$ to the given rectangle CB, BD; therefore, because the rectangle containe! by the straight lines $F B, B C$ is given, and also the excess of the square of BC above the square of $\mathrm{BF} ; \mathrm{FB}, \mathrm{BC}$, are each of them givenf ; and the ratio of FB to $B A$ is given; therefore $A B, B C$ are given.

The Composition is as follows :

Let GHK be the given angle to which the angle of the parallelogram is to be made equal, and from any point G in HG, draw GK perpendicular to HK ; let GK, HL be the rectangle
rectangle to which the parallelogram is to be made equal, and let LH, HM be the rectangle equal to the given space which is to be taken from the square of one of the sides; and let the ratio of the remainder to the square of the other side be the same with the
 ratio of the square of the given straight line NH to the square of the given straight line $H G$.

By help of the 87 th dat. find two straight lines BC, BF, which contain a rectangle equal to the given rectangle NH , HL, and such that the excess of the square of BC above the square of BF be equal to the given rectangle LH, HM ; and join CB, BF in the angle FBC equal to the given angle GHK: And as NH to HG, so make FB to BA , and complete the paralle-
 $\operatorname{logram~} A C$, and draw $A E$ perpendicular to $B C$: then $A C$ is equal to the rectangle GK, HL; and if from the square of BC , the given rectangle LH, HM be taken, the remainder shall have to the square of BA the same ratio which the square of NH has to the square of HG.

Because, by the construction, the square of BC is equal to the square of BF together with the rectangle LH, HM; if from the square of BC there be taken the rectangle LH, HM, there remains the square of $B F$, which has 8 to the square of $\varepsilon 22,6$. BA the same ratio which the square of NH has to the square of HG , because, as NH to HG , so $F \mathrm{~B}$ was made to BA : but as HG to GK , so is BA to AE , because the triangle GHK is equiangular to ABE ; therefore, ex æquali, as NH to GK, so is FB to AE ; wherefore ${ }^{\text {b }}$ the rectangle NH, HL is to the rect- ${ }^{\text {a }} 1.6 \ldots$ angle GK, HL, as the rectangle FB, BC to AE, BC; but by the construction the rectangle NH, HL is equal to FB, BC; therefore ${ }^{i}$ the rectangle GK, HL is equal to the rectangle ${ }_{1} 14.5$. $A E, B C$, that is, to the parallelogram AC.

The analysis of this problem might have been made as in the 86th Prop. in the Greek, and the composition of it may be made as that which is in Prop. 87 th of this edition.

PROP. XL.

IF two straight lines contain a given parallelgram in a given angle, and if the square of one of them together with the space, which has a given ratio to the square of the other be given, each of the straight lines shall be given.
Let the two straight lines AB, BC contain the given parallelogram $A C$ in the given angle $A B C$, and let the square of $B C$ together with the space which has a given ratio to the square of $A B$ be given, $A B, B C$ are each of them given.
Let the square of $B D$ be the space which has the given ratio to the square of $A B$; therefore, by the hypothesis, the square of $B C$ together with the square of $B D$ is given. From the point A , draw AE perpendicular to BC ; and because the angles $\mathrm{ABE}, \mathrm{BEA}$ are given, the triangle ABE is given ${ }^{8}$ in species; therefore the ratio of BA to AE is given: And because the ratio of the square of $B D$ to the square of $B A$ is given, the
58. dat.

9, dat. ratio of the straight line BD to BA is given ${ }^{\mathrm{b}}$; and the ratio of BA to AE is given; therefore ${ }^{\mathrm{c}}$ the ratio of AE to BD is given, as also the ratio of the rectangle AE, BC, that is, of the parallelogram $A C$ to the rectangle $D B, B C$; and $A C$ is given, therefore the rectangle $D B, B C$ is given; and the square of

438. dat.
$B C$ together with the square of $B D$ is given :p therefore because the rectangle contained by the two straight lines DB , $B C$ is given, and the sum of their squares is given: The straight lines $D B, B C$ are each of them given; and the ratio of $D B$ to 13 A is given; therefore AB, BC are given.

The Composition is as follows :
Let FGH be the given angle to which the angle of the parallelogram is to be made equal, and from any point F in GF draw FH perpendicular to GH ; and let the rectangle FH , GK be that to which the parallelogram is to be made equal; and let the rectangle KG, GL be the space to which the square

D A T A.

of one of the sides of the parallelogram, together with the space which has a given ratio to the square of the other side, is to be made equal ; and let this given ratio be the same which the square of the given straight line MG has to the square of GF.

By the 88 th dat. find two straight lines DB, BC which contain a rectangle equal to the given rectangle MG, GK, and such that the sum of their squares is equal to the given rectangle KG, GL ; therefore, by the determination of the problem in that proposition, twice the rectangle MG, GK must not be greater than the rectangle KG, GL. Let it be so, and join the straight lines DB BC in the angle DBC equal to the given angle FGH ; and, as MG to GF, so make DB, to BA, and complete the parallelogram $A C: A C$ is equal to the rect-

angle FH, GK; and the square of BC together with the square of $B D$, which, by the construction, has to the square of $B A$ the given ratio which the square of MG has to the square of GF, is equal, by the construction, to the given rectangle KG, GL. Draw AE perpendicular to BC.

Because, as DB to BA, so is MG to GF ; and as BA to $A E$, so GF to FH ; ex æquali, as DB to AE , so is MG to FH ; therefore, as the rectangle DB, BC to AE, BC, so is the rectangle MG, GK to FH, GK; and the rectangle DB , BC is equal to the rectangle MG, GK; therefore the rectangle AE, BC, that is the parallelogram AC , is equal to the rectangle FH, GK.

PROP. XCI.

If a straight line drawn within a circle geven in magnitude cuts off a segment which contains a given angle; the straight line is given in magnitude.

In the circle $A B C$ given in magnitude, let the straight line $A C$ be drawn, cutting off the segment $A E C$ which contains the given angle AEC ; the straight line AC is given in magnitude.

Take D the centre of the circle ${ }^{2}$, join $\AA D$, and produce it = 1.3.

F. UCLID'S

-31.3.1 c 43. dat.
${ }^{4} 5$. def.
e 2. dat.
89.
to E and join EC: The angle ACE being a right ${ }^{\text {b }}$ angle, is given; and the angle AEC is given; therefore ${ }^{c}$ the triangle ACE is given in species, and the ratio of EA to AC is therefore given, and EA is given in magnitude, because the circle is given ${ }^{\text {d }}$ in magnitude; AC is therefore given ${ }^{e}$ in magnitude.

PROP. XCII.

F a straight line given in magnitude be drawn within a circle given in magnitude, it shall cut off a segment containing a given angle.

Let the straight line AC given in magnitude be drawn within the circle $A B C$ given in magnitude; it shall cut off a segment containing a given angle.

Take D the centre of the circle, join AD and produce it to E , and join EC : And because each of the straight lines EA

1. dat.
-46. dat. and AC is given, their ratio is given ${ }^{2}$: and the angle ACE is a right angle, therefore the triangle ACE is given ${ }^{b}$ in species, and consequently the angle AEC is given.

PROP. XCIII.

IF from any point in the circumference of a circle given in position two straight liues be drawn, meeting the circumference and containing a given angle ; if the point in which one of them meets the circumference again be given, the point in which the other meets it is also given.
From any point A in the circumference of a circle ABC given in position, let $A B, A C$ bedrawn to the circumference making the given angle BAC ; if the point B be given, the point C is also given.

Take D the centre of the circle, and join BD, DC ; and because each of the points B, D is given, BD is given ${ }^{2}$ in position ; and because the angle BAC is
DATA.
because the straight line $D C$ is drawn to the given point D in the straight line $B D$ given in position in the given angle $B D C$, $D C$ is givenc. In position: And the circumference $A B C$ is ${ }^{c} 39$, dat. given in position, therefore ${ }^{d}$ the point C is given:

PROP. XCIV.
91.

IF from a given point, a straight line be drawn touching a circle given in position; the straight line is given in position and magnitude,
Let the straight line $A B$ be drawn from the given point A , touching the circle BC given in position; AB is given in position and magnitude.
Take D the centre of the circle, and join DA, DB: Because each of the points D, A is given, the straight line AD is given ${ }^{2}$ in position and magnitude: And DBA is a right ${ }^{\text {b }}$ angle, wherefore DA is a diameter ${ }^{\text {c }}$ of the circle DBA, described about the triangle DBA ; and that circle is therefore givend in position: And the circle BC is given in position, therefore the
 point B is givene. The point A is also given: Therefore ees.dat. the straight line $A B$ is given ${ }^{2}$ in position and magnitude.

PROP. XCV.

IF a straight line be drawn from a given point without a circle given in position; the rectangle contained by the segments betwixt the point and the circumference of the circle is given.
Let the straight line $A B C$ be drawn from the given point A without the circle BCD given in position, cutting it in B, C; the rectangle $B A, A C$ is given.
From the point A, draw ${ }^{\text {E }} \mathrm{AD}$ touching the circle; therefore AD is given ${ }^{\text {b }}$ in position and magnitude: And because $A D$ is given, the square
 of $A D$ is givenc, which is equald ${ }^{\text {d }}$ to the rectangle $B A, A C$: ${ }^{c 56 . d a t .}$ Therefore the rectangle BA, AC is given.

IF a straight line be drawn through a given point within a circle given in position, the rectangle contained by the segments betwixt the point and the circumference of the circle is given.
Let the straight line BAC be drawn through the given point A within the circle BCE given in position; the rectangle BA, AC is given.

Take D the centre of the circle, join AD , and produce it to the points E, F : Because the points A, D are given, the straight line $A D$ is given ${ }^{2}$ in position; and the circle BEC is given in position; therefore the points E, F are given ${ }^{\text {b }}$; and the point A is given, therefore EA, AF
 are each of them givena, and the rectangle $E A, A F$ is therefore given; and it is equal ${ }^{\text {c }}$ to the rectangle $B A, A C$, which consequently is given.

PROP. XCVII.

I_{F}F a straight line be drawn within a circle given in magnitude, cutting off a segment containing a given angle ; if the angle in the segment be bisected by a straight line produced till it meets the circumference, the straight lines which contain the given angle shall both of them together have a given ratio to the straight line which bisects the angle. And the rectangle contained by both these lines together which contain the given angle, and the part of the bisecting line cut offbelow the base of the segment, shall be given.

Let the straight line BC be drawn within the circle ABC given in magnitude, cutting off a segment containing the given angle $13 A C$, and let the angle BAC be bisected by the straight line $A D ; B A$ together with $A C$ has a given ratio to AD ; and the rectangle contained by BA and AC together, and the straight line ED cut off from AB below BC the base of the segment is given.

Join $B D$; and because $B C$ is drawn within the circle $A B C$

given in magnitude cutting off the segment BAC , containing

 the given angle $B A C ; B C$ is given ${ }^{2}$ in magnitude: By the ${ }^{2} 91$. dat. same reason BD is given; therefore ${ }^{\text {b }}$ the ratio of BC to $\mathrm{BD}^{\circ} 1$. dat. is given: And because the angle BAC is bisełed by $A D$, as BA to AC , so is BE to EC ; and, by pernutation, as AB es. 6 . to BE , so is AC to CE ; wherefored, as BA and AC together ${ }^{8} 12.5$. to BC ; so is AC to CE : And because the angle BAE is equal to $E A C$, and the angle $A C E$ to ADB , the triangle ACE is equiangular tothe triangle ADB ; therefore as AC to CE , so is AD to DB : But as $A C$ to $C E$, so is $B A$ together with AC to BC ; as therefore BA and AC to BC , so is AD to DB : and, by permutation, as BA and AC to AD so is $B C$ to $B D$: And the ratio of $B C$ to $B D$ is given, therefore the ratio of BA together with AC to AD is given.

Also the rectangle contained by BA and AC together, and DE is given.
Because the triangle BDE is equiangular to the triangle $A C E$, as $B D$ to $D E$, so is $A C$ to $C E$; and as $A C$ to $C E$, so is $B A$ and $A C$ to $B C$; therefore as $B A$ and $A C$ to $B C$, so is BD to DE ; wherefore the reflangle contained by BA and AC together, and DE , is equal to the reftangle CB, BD : But CB, BD is given; therefore the rectangle contained by BA and AC together, and DE , is given.

Otherwise,

Produce CA , and make AF equal to AB , and join BF ; and because the angle BAC is doublea of each of the angles ${ }^{2}\left\{\begin{array}{l}52.1\end{array}\right.$ $\mathrm{BFA}, \mathrm{BAD}$, the angle BFA is equal to BAD ; and the angle $B C A$ is equal to BDA, therefore the triangle FCB is equiangular to ABD : As therefore FC to CB , so is AD to DB ; and, by permutation, as FC , that is, BA and AC together, to $A D$, so is $C B$ to $B D$: And the ratio of $C B$ to $B D$ is given, therefore the ratio of $B A$ and $A C$ to $A D$ is given.

And because the angle BFG is equal to the angle DAC, that is, to the angle $D B C$, and the angle $A C B$ equal to the angle ADB ; the triangle FCB is equiangular to BDE , as therefore FC to CB , so is BD to DE ; therefore the fectangle. contained by FC, that is, BA and AC together, and DE is

$$
\mathrm{G} \mathrm{~g} \quad \text { equa! }
$$

equal to the rectangle CB, BD which is given, and therefore the rectangle contained by BA, AC together, and DE is given.
P.

PROP. XCVIII.

IF a straight line be drawn within a circle given in magnitude, cutting off a segment containing a given angle : If the angle adjacent to the angle in the segment be bisected by a straight line produced till it meet the circumference again, and the base of the segment; the excess of the straight lines which contain the given angle shiall have a given ratio to the segment of the bisecting line which is within the circle; and the rectangle contained by the same excess, and thesegment of the bisecting line betwixt the base produced and the point where it again meets the circumference, shall be given.

Let the straight line $B C$ be drawn within the circle $A B C$ given in magnitude, cutting off a segment containing the given angle BAC , and let the angle CAF adjacent to BAC be bisected by the straight line DAE, meeting the circumference again in D , and BC the base of the segment produced in E ; the excesss of BA, AC has a given ratio to AD ; and the rectangle which is contained by the same excess and the straight line ED is given.

Join BD , and through B , draw BG parallel to DE meeting $A C$ produced in G : And because BC cuts off from the circle $A B C$ given in magnitude the segment BAC containing a given an-
291. dat, gle, BC is therefore given in magnitude: By the same reason $B D$ is given, because the angle BAD is equal to the given angle EAF; therefore the ratio of BC to BD is given: And because the angle CAE is equal to EAF, of which CAE
 is equal to the alternate angle AGB , and EAF to the interior and opposite angle $A B G$; therefore the angle $A G B$ is equal to $A B G$, and the straight line $A B$ equal to $A G$; so that $G C$ is
D A T A:
the excess of $B A, A C$: And because the angle $B G C$ is equal to GAE, that is to EAF, or the angle BAD; and that the angle BCG is equal to the opposite interior angle BDA of the quadrilateral BCAD in the circle; therefore the triangle BGC is equiangular to BDA . Therefore as GC to CB , so is AD to DB : and, by permutation, as GC which is the excess of $B A, A C$ to $A D$, so is $B C$ to $B D$: And the ratio of CB to BD is given; therefore the ratio of the excess of BA, $A C$ to $A D$ is given.

And because the angle GBC is equal to the alternate angle $D E B$, and the angle BCG equal to BDE ; the triangle BCG is equiangular to BDE : Therefore as GC to CB , so is BD to DE : and consequently the rectangle GC, DE is equal to the rectangle CB, BD which is given, because its sides CB , BD are given: Therefore the rectangle contained by the excess of $B A, A C$ and the straight line $D E$ is given.

PROP. XCIX.

IF from the given point in the diameter of a circle given in position, or in the diameter produced, a straight line be drawn to any point in the circumference, and from that point a straight line be drawn at right angles to the first, and from the point in which this meets the circumference again, a straight line be drawn parallel to the first; the point in which this parallel meets the diameter is given; and the rectangle contained by the two parallels is given.

In $B C$ the diameter of the circle $A B C$ given in position, or in BC produced, let the given point D be taken, and from D let a straight line DA bedrawn to any point A in the circumference, and let AE be drawn at right angles to DA , and from the point E where it meets the circumference again let EF be drawn parallel to DA meeting BC in F ; the point F is given, as also the rectangle $A D, E F$.

Produce EF to the circumference in G, and join AG: Because GEA is a right angle, the straight line AG is ${ }^{2}$ the . Cor.5. 4. diameter of the circle ABC; and BC is also a diameter of it; therefore the point H, where they meet, is the centre of the circle, and consequently H is given: And the point D is given, wherefore $D H$ is given in magnitude. And because $A D$ is

E U C L I D ${ }^{*}$ S

parallel to FG ; and GH equal to HA ; DH is equal ${ }^{\mathrm{b}}$ to HF , and AD equal to GF: And DH is given, therefore HF is given

(30. dat.
© 95 . or 96 dat.
in magnitude; and it is also given in position, and the point H is given, thereforec the point F is given.

And because the straight line EFG is drawn from a given point F without or within the circle $A B C$ given in position, therefored the rectangle EF, FG is given: And GF is equal to $A D$, wherefore the rectangle $A D, E F$ is given.

PROP. C.

IF from a given point in a straight line given in position, a straight line be drawn to any point in the circumference of a circle given in position; and from this point a straight line be drawn, making with the first an angle equal to the difference of a right angle, and the angle contained by the straight line given in position, and the straight line which joins the given point and the centre of the circle; and from the point in which the second line meets. the circumference again, a third straight line be drawn, making with the second an angle equal to that which the first makes with the second: The point in which this third line meets the straight line given in position is given; as also the rectangle contained by the first straight line and the segment of the third betwixt the circumference and the straight line given in position, is given.

Let the straight line CD be drawn from the given point C , in the straight line $A B$ given in position, to the circumference of the circle DEF given in position, of which G is the centre; join CG_{2} and from the point D let DF be drawn, making the angle CDF equal to the difference of a right angle, and the angle BCG , and from the point F let FE be drawn, making
the angle $D F E$ equal to $C D F$, meeting $A B$ in H : The point H is given; as also the rectangle $C D$, FH.

Let CD, FH meet one another in the point K , from which draw KL perpendicular to DF; and let DC meet the circumference again in M, and let FH meet the same in E , and join MG, GF, GH.

Because the angles MDF, DFE are equal to one another, the circumferences MF, DE are equal ${ }^{2}$; and adding or taking away the common part ME, the circumference DM is equal to EF ; therefore the straight line DM is equal to the straight line EF , and the angle GMD to the angle ${ }^{\text {b }}$ GFE; and the angles GMC, GFH are equal to one another, because they are either the same with the angles GMD, GFE, or adjacent to them: And because the angles KDL, LKD are together equalc to a right angle, that is, by the hypothesis, to the angles $\mathrm{KDL}, \mathrm{GCB}$; the angle GCB or GCH is equal to
 the angle (LKD, that is, to the angle) LKF or GKH: Therefore the points $\mathrm{C}, \mathrm{K}, \mathrm{H}, \mathrm{G}$ are in the circumference of a circle ; and the angle GCK is therefore equal to the angle GHF; and the angle GMC is equal to GFH, and the straight line GM to GF ; therefore ${ }^{\mathrm{d}} \mathrm{CG}$ is equal to GH , and CM to $\mathrm{HF}:{ }^{\circ} 200,1$. And because CG is equal to GH , the angle GCH is equal to GHC; but the angle GCH is given: Therefore GHC is given, and consequently the angle CGH is given; and CG is given in position, and the point G ; therefore ${ }^{e} \mathrm{GH}$ is given in position; and CB is also given in position, wherefore the ${ }^{\text {e }} 32$. dat. point H is given.

And because HF is equal to CM, the rectangle DC, FH is
 C is given, therefore the rectangle DC, FH-is given.

- 9 Resjom in

 \& !

0. 1 $1.2,200510$ ती 1

\qquad
\qquad कna n
$1-1, \frac{1}{2}+\frac{1}{2}$ $i+2-410$ ra kyoch

Notes

ON

E U CLID'S. DATA

DEFINITION II.

THIS is made more explicit than in the Greek text, to prevent a mistake which the author of the second demonstration of the 24th Proposition in the Greek edition has fallen into, of thinking that a ratio is given to which another ratio is shewn to be equal, though this other be not exhibited in given magnitudes. See the Notes on that Proposition, which is the $13^{\text {th }}$ in this edition. Besides, by this definition, as it is now given, some propositions are demonstrated, which in the Greek are not so well done, by help of Prop. 2.

DEF. IV.

In the Greek text, def. 4 . is thus: "Points, lines, spaces, "and angles are said to be given in position which have always "the same situation;" but this is imperfect and useless, because there are innumerable cases in which things may be given according to thisdefinition, and yet their position cannot be found; for instance, let the triangle ABC be given in position, and let it be proposed to draw a straight line BD from the angle at B to the opposite side AC, which shall cut off the angle DBC , which shall be the seventh part of the angle $A B C$; suppose this is done, therefore the straight line BD is invariable in its position, that is has always the same situation; for any.
 other straight line drawn from the point B on either side of BD cuts off an angle greater or lesser than the seventh part of the angle $A B C$; therefore, according to this definition, the straight line BD is given in position, as also the point D in ${ }^{2} 25$. dat which it meets the straight line $A C$ which is given in position. But from the things here given, neither the straight line BD nor the point D cau be found by the help of Euclid's Elements only, by which every thing in his data is supposed may G g 4

NOTESON

be found. This definition is therefore of no use. We have amended it by adding, "and which are either actually exhi" bited, or can be found ;" for nothing is to be reckoned given, which cantot be found, or is not actually exhibited.
The definition of an angle given by position is taken out of the 4 th, and given more distinctly by itself jin the definition marked A.

DEF, XI. XII. XIII: XIV. XV.

The IIth and 12th are omitted, because they cannot be given in English so as to have any tolerable sense; and therefore, wherever the terms defiried ioccur, the words which express their meaning are made use of in their place.

The 13 th, 14 th, 15 th are omitted, as being of no use. ros.
It is to be observed, in general of the data in this book, that they are to be understood to be given geometrically, not always arithmetically, that is; they cannot always be exhibited in numbers; for instance, if the sidee of a square be given,
b44. dat.
${ }^{\text {c }} 2$. dat.

1. def.
-2. def. the ratio of, it to its diameter is given ${ }^{\text {b }}$ geometrically, but not in numbers; and the diameter is givenc; but though the number of any equal parts in the side be given, for example 10, the number of them in the diameter cannot be given: And the like holds in many other cases.

PROPOSITION I.

- In this it is shewn that Λ is to B, as C to D, from this, that A is to C , as B to D , and then by permutation; but it follows directly without these two steps, from \% to 5 .
我:

The limitation added at the end of this proposition between the inverted commas is quite necessary, because without it the proposition cannót always be demonstrated: For the author having said*, "because A is given, a magnitude equal to it "can be found : let this be $\mathrm{C} ;$; and because the ratio of A to "B is given, a ratio which is the same to it can be found ${ }^{b}$," adds, "let it be fourid, and let it be, the ratio of C to \triangle." Now, from the second definition, nothing more follows than that some ratio, suppose the ratio of E to Z , can be found, which is the same with the ratio of A. to B; and when the author ssupposes that the ratio of C to Δ, which is also

[^17]EUCLID'S DATA.
also the same with the ratio of A to B, can be found, he necessarily supposes that to the three magnitudes $\mathrm{E}, \mathrm{Z}, \mathrm{C}$, a fourth proportional Δ may be found; but this cannot always be done by the Elements of Euclid; from which it is plain Euclid must have understood the proposition under the limitation which is now added to his ext. An example will make this clear: Let A be a given angle, and B another angle to which A has a given ratio; for instance, the ratio of the given straight line E to the given one \mathbf{Z}; then, having found an angle C equal to A, how can the angie Δ be found to which C has the same ratio that E has to Z ? Tertainly no way, until it be shown how to find an angle to which a given angle has a given ratio, which
 cannot be done by Euclid's Elements, nor probably by any Geometry known in his time. Therefore, in all the propositions of this book which depend upon this second, the abovementioned limitation must be understood, though it be not explicitly mentioned.

PROP. V.

The order of the Propositions in the Greek text between Prop. 4. and Prop. 25. is now changed into another which is more natural, by placing those which are more simple before those which are more complex; and by placing together those which are of the same kind, some of which were mixed among others of a different kind. Thus, Prop. 12. in the Greek is now made the 5 th, and those which were the 22 d and 23 d are made the 11 th and 12 th, as they are more simple than the propositions concerning magnitudes, the excess of one of which above a given magnitude has a given ratio to the other, after which these two were placed; and the 24th in the Greek text is, for the same reason, made the 13th.

PROP. VI. VII.

These are universally true, though, in the Greek text, they are demonstrated by Prop. 2. which has a limitation; they are therefore now shewn without it,

PROP. XII.

In the 23d Prop. in the Greek text, which here is the 12th, the words, " $\mu \eta$ ₹es cures ope" are wrong translated by Claid. Hardy, in his edition of Euclid's Data, printed at Paris, anno 1625, which was the first.edition of the Greek text; and Dr. Gregory follows him in translating them by the words, "etsi, "non easdem," as if the Greek had been $\varepsilon ⿺$ xat un ךes aurys as in Prop. 9. of the Greek text. Euclid's meaning is, that the ratios mentioned in the proposition must not be the same; for, if they were, the proposition would not be true. Whatever ratio the whole has to the whole, if the ratios of the parts of the first to the parts of the other be the-same with this ratio, one part of the first may be double, triple, \&xc. of the other part of it, or have any other ratio ta it, and consequently cannot have a given ratio to it; wherefore, these words must be rendered by " non autem, easdem," but not the same ratios, as Zambertus has translated them in his edition.

PROP. XIII.

Some very ignorant editor has given a second demonstration of this proposition in the Greek text, which has been as ignorantly kept in by Claud. Hardy and Dr. Gregory, and has been retained in the translations of Zambertus and others; Carolus Renaldinus gives it only: The author of it has thought that a ratio was given,' if another ratio could be shewn to be the same to it, though this last ratio be not found: But this is altogether absurd, because fromit would be deduced that the ratio of the sides of any two squares is given, and the ratio of the diameters of any two circles, \&c. And it is to be observed, that the moderns frequently take given ratios, and ratios that are always. the same, for one and the same thing; and Sir Isaac Newton has fallen into this mistake in the 17 th Lemma of his Principia, edit. 1713, and in other places'; but this should be carefully avoided, as it may lead into other errors.

> PROP. XIV. XV.

Eúclid in this book has several propositions concerning magnitudes, the excess of one of which above a given magni-

EUCLID'S DATA.

tude has a given ratio to the other; but he has given none concerning magnitudes whereof one together with a given magnitude has a given ratio to the other ; though these last occur as frequently in the solution of problems as the first; the reason of which is, that the last may be all demonstrated by help of the first; for if a magnitude, together with a given magnitude, has a given ratio to another magnitude, the ex.ess of this other above a given magnitude shall have a given ratio to the first, and on the contrary; as we have demonstrated in Prop. 14 And for a like reason, Prop. 15. has been added to the Data. One example will make the thing clear: Suppose it were to be demonstrated, that if a magnitude Λ together with a given magnitude has a given ratio to another magnitude B, that the two magnitudes A and B, together with a given magnisude, have a given ratio to that other magnitude B ; which is the same proposition with respect to the last kind of magnitudes above-mentioned, that the first part of Prop. 16, in this edition is in respect of the first kind: This is shewn thus, from the hypothesis, and by the first part of Prop. I4 the excess of B above a given magnitude has unto A a given ratio; and, therefore, by the first part of Prop. 17. the excess of B above a given magnitude has unto B and A together a given ratio; and by the second part of Prop. 14. A and B together with a given magnitude has unto B a given ratio; which is the thing that was to be demonstrated. In like manner, the other propositions concerning the last kind of magnitudes may be shewn.

PROP. XVI. XVII.

In the third part of Prop. 10. in the Greek text, which is the 16th in this edition, after the ratio of EC to CB has been shown to be given; from this, by inversion and conversion the ratio of BC to BE is demonstrated to be given; but without these two steps, the conclusion should have been made only by citing the 6th Proposition. And in like manner, in the first part of Prop. II. . in the Greek, which in this edition is the 17 th from the ratio of $D B$ to $B C$ being given, the ratio of DC to DB is shewn to be given, by inversion and composition, instead of citing Prop. 7 . and the same fault occurs in the second part of the same Prop. II.

NOTESON

PROP. XXI. XXII.

These now are added, as being wanting to complete the subject treated of in the four preceding propositions.

PROP. XXILI.
This which is Prop. 20. in the Greek text, was separated from Prop. 14. 15. 16. in that text, after which it should have been immediately placed, as being of the same kind; it is now put into its proper place; but Prop. 21. in the Greek is left out, as being the same. with Prop. 14. in that text, which is here Prop. 18.

PROP. XXIV.

This, which is Prop. 13. in the Greek, is now put into its proper place, having been disjoined from the three following it in this edition, which are of the same kind.

PROP. XXVIII.

This, which in the Greek text is Prop. 25. and several of the following propositions, are there deduced from Def. 4. which is not sufficient, as has been.mentioned in the note on that definition :- They are therefore now shewn more explicitly.

PROP. XXXIV. XXXVI.

Each of these has a determination, which is now added, which occasions a change in their demonstrations.

PROP. XXXVII. XXXIX. XL. XLI.
The 35th and $3^{6 \text { th }}$ Propositions in the Greek text are joined into one, which makes the 39 th in this edition, because the same enunciation and demonstration serves both: And for the same reason Prop. 37. 38. in the Greek are joined into one, which here is the 40 th.

Prop. 37. is added to the Data, as it frequently occurs in the solution of problems; and Prop. 41. is added, to complete the rest.

PROP. XLII.

This is Prop. 39. in the Greek text, where the whole construction of Prop. 22. of Book I. of the Elements is put, without need, into the demonstration, but is now only cited.

PROP. XLV.

This is Prop. 42. in the Greek, where the three straight lines made use of in the construction are said, but not shewn, to be such that any two of them is greater than the third, which is now done.

> EUCLID'S DATA.

PROP. XLVII.

This is Prop. 44. in the Greek text; but the demonstration of it is changed into another, wherein the several cases of it are shewn, which, though necessary, is not done in the Greek.

PROP. XLVIII.

There are two cases in this proposition, arising from the two cases of the third part of Prop. 47 . on which the 48 th depends ; and in the composition these two cases are explicitly given.

> PROP. LII.

The construction and demonstration of this, which is Prop48. in the Greek, are made something shorter than in that text. PROP. LIII.
Prop. 63. in the Greek text is omitted, being only a case of Prop. 49. in that text, which is Prop. 53. in this edition.

PROP. LVIII.

This is not in the Greek text, but its demonstration is contained in that of the first part of Prop. 54. in that text; which proposition is concerning figures that are given in species: This 58 th is true of similar figures, though they be not given in species, and, as it frequently occurs, it was necessary to add itf

> PROP. LIX. LXI.

This is the 54th in the Greek; and the 77th in the Greek, being the very same with it, is left out, and a shorter demonstration is given of Prop. 61.

PROP. LXII.

This, which is most frequently useful, is not in the Greek ${ }_{2}$ and is necessary to Prop. 87.88. in this edition, as also, though not mentioned, to Prop. 86.87 . in the former editions. Prop. 65. in the Greek text-is made a corollary to it.

PROP. LXIV.
This contains both Prop. 74. and 73. in the Greek text; the first case of the $74^{\text {th }}$ is a repetition of Prop. 56. from which it is separated in that text by many propositions; and as there is no order in these propositions, as they stand in the Greek, they are now put into the ordet which seemed most convenient and natural.

NOTES ON

'The demonstration of the first part of Prop. 73. in the Greek is grossly vitiated. Dr. Gregory says, that the sentences he has inclosed betwixt two stars are superfluous, and ought to be cancelled; but he has not observed, that what follows them is absurd, being to prove that the ratio [See his figure] of AГ to ΓK is given, which, by the hypothesis at the beginning of the proposition, is expressly given; so that the whole of this part was to be altered, which is done in this Prop. 64.

PROP. LXVII. LXVIII.

Pror. 70. in the Greek text, is divided into these two, for the sake of distinctriess; and the demonstration of the 67 th is rendered shorter than that of the first part of Prop. 70. in the Greek, by means of Prop. 23; of Book 6. of the Elements.

PROP. LXX.

This is Prop. 62. in the Greektext; Prop. 78. in that text is only a particular case of it, and is therefore omitted.

Dr. Gregory, in the demonstration of Prop. 62. cites the $49^{\text {th }}$ Prop. dat, to prove that the ratio of the figure AEB to the parallelogram AH is given; whereas this was shewn a few lines before: And besides, the 49 th Prop. is not applicable to these two figures; because AH is not given in species, but is, by the step for which the citation is brought, proved to be given in species.

PROP. LXXIII.

Pror. 83. in the Greek text, is neither well enunciated nor demunstrated. The 73 d , which in this edition is put in place of it, is really the same, as will appear by considering [See Dr. Gregory'sedition], that A, B, Γ, E, in the Greek text, are four proportionals, and that the proposition is to shew, that Δ, which has a given ratio to E , is to Γ, as B is to a straight line to which A has a given ratio; or, hy inversion, that Γ is to Δ, as a straight line to which A has a given ratio, is to B : that is, if the proportionals be placed in this order, viz. Γ, E, A, B, that the first Γ is to Δ, to which the second E has a given ratio, as a straight line to which the third A has a given ratio is to the fourth B; which is the enunciation of this 73 d , and was thus changed, that it might be made like to that of Prop. 72. in this edition, which is the 82d in the Greek text: And the de-
monstration of Prop. 73. is the same with that of Prop. 72. only making use of Prop. 23. instead of Prop. 22. of Book 5. of the Elements.

PROP. LXXVII.

This is put in place of Prop. 79. in the Greek text, which is not a datum, but a theorem premised as a lemma to Prop. 80. in that text: And Prop. 79. is made Cor. 1. to Prop. 77. in this edition. Cl. Hardy, in his edition of the Data, takes notice, that in Prop. 80. of the Greek text, the parallel KL in the figure of Prop. 77° in this edition, must meet the circumference, but does not demonstrate it, which is done here at the end of Cor. 3. Prop. 77. in the construction for finding a triangle similar to ABC .

PROP. LXXVIII.

The demonstration of this, which is Prop. 80. in the Greek is rendered a good deal shorter by help of Prop. 77.

PROP. LXXIX. LXXX. LXXXI.
These are added to Euclid's Data, as propositions which are often useful in the solution of problems.

PROP. LXXXII.

TH1s, which is Prop. 60. in the Greek text, is placed before the 83^{d} and 84 th, which in the Greek are the 58 th and 59 th, because the demonstration of these two in this edition are deduced from that of Prop. 82. from which they naturally follow.

PROP. LXXXVIII. XC.

Dr. Gregory, in his preface to Euclid's works, which he published at Oxford in 1703, after having told that he had supplied the defects of the Greek text of the Data in innumerabie places from several manuscripts, and corrected Cl. Hariy's translation by Mr. Bernard's, adds, that the 86th theorem, "or "proposition," seemed to be remarkably vitiated, but which could not be restored by help of the manuscripts; then he gives three different transla:ions of it in Latin, according to which he thinks it may be read; the two first have no discinct meaning, and the third, which he sajs is the best, though it
contains a true proposition, which is the goth in this edition, has no connection in the least with the Greek text. And it is strange that Dr. Gregory did not observe, that, if Prop. 86. was changed into this, the demonstration of the 86th must be cancelled, and another put into its place: But the truth is, boths the enunciation and the demonstration of Prop. 86. are quite entire and right, only Prop. 87 . which is more simple, ought to have been placed before it; and the deficiency which the Doctor justly observes to be in this part of Euclid's Data, and which, no doubt, is owing to the carelessness and ignorançe of the Greek editors, should háve been supplied, not by changing Prop. 86, which is both entire and necessary, but by adding the two propositions, which are the 88th and opth in this edition.

PROP. XCVIII. \dot{C}.

These were communicated to me by two excellent geometers, the first of them by the Right Honourable the Earl of Stanhope, and the other by Dr. Matthew Stewart ; to which I have added the demonstrations.

Though the order of the propositions has been in many places changed from that in former editions, yet this will be of little disadvantage, as the ancient geometers never cite. the Data, and the moderns very rarely.

AsS that part of the composition of a problem which is its construction may not be so readily deduced from the analysis by beginners, for their sake the following example is given ; in which the derivation of the several parts of the construction from the analysis is particularly shewn, that they may be assisted to do the like in other problems.

' PROBLEM.

Having given the magnitude of a parallelogram, the angle of which $A B C$ is given, and also the excess of the square of its sides $B C$ above the square of the side $A B$; to find its sides and describe it.

The analysis of this is the same with the demonstration of the 87 th Prop. of the Data, and the construction that is given of the problem at the end of that proposition is thus derived from the analysis.
EUCLID'S DATA.

Let EFG be equal to the given angle ABC , and because in the analysis it is said that the ratio of the rectangle $A B$, $B C$, to the parallelogram $A C$ is given by the $62 d$ Prop. dat. therefore, from a point in $F E$, the perpendicular $E G$ is drawn to FG, as the ratio of FE to EG is the ratio of the rectangle

$A B, B C$ to the parallelogram $A C$, by what is shewn at the end of Prop. 62. Next, the magnitude of AC is exhibited by making the rectangle EG, GH equal to it; and the given excess of the square of $B C$ above the square of $B A$, to which excess the rectangle $C B, B D$ is equal, is exhibited by the rectangle HG, GL: Then, in the analysis, the rectangle AB, BC is said to be given, and this is equal to the rectangle FE, GH, because the rectangle AB, BC is to the parallelogram AC , as (FE to EG, that is, as the rectangle) FE, GH to EG, GH ; and the parallelogram AC is equal to the rectangle EG, GH, therefore the rectangle AB, BC, is equal to FE, GH : And consequently the ratio of the rectangle CB, BD, that is, of the rectangle HG, GL, to AB, BC, that is, of the straight line DB to BA , is the same with the ratio (of the rectangle GL, GH to FE, GH , that is) of the straight line GL to FE, which ratio of DB to BA, is the next thing said to be given in the analysis : From this it is plain that the square of FE is to the square of GL , as the square of $B A$, which is equal to the rectangie $B C, C D$, is to the square of BD : The ratio of which spaces is the next thing said to be given: And from this it follows, that four times the square of FE is to the square of GL, as four times the rectangle BC, CD is to the square of BD ; and, by composition, four times the square of FE , together with the square of GL , is to the square of GL, as four times the rectangle BC, CD, together with the square of $B D$, is to the square of BD , that is (8.6.) as the square of the straight lines $B C, C D$ taken together is to the square of $B D$, which ratio is the next thing said to be given in the analysis: And because four times the; square of FE and the square of GL are to be added together therefore in the perpendicular EG there be taken KG equal to

NOTESON

FE, and MG equal to the double of it, because thereby the squares of $M G, G L$, that is, joining ML, the square of $M L$, is equal to four times the square of FE , and to the square of GL: And because the square of ML is to the square of GL, as the square of the straight line made up of $B C$ and $C D$ is to the square of BD , therefore (22.6.) ML is to LG , as BC together with CD is to BD; and, by composition, ML and LG together, that is, producing GL to N , so that ML be equal to LN, the straight line NG is to GL, as twice BC is to BD; and by taking GO equal to the half of NG, GO is to GL, as $B C$ to BD , the ratio of which is said to be given in the analysis: And from this it follows, that the rectangle HG, GO is to HG, GL, as the square of BC is to the rectangle CB, BD, which is equal to the rectangle HG, GL ; and therefore the square of BC is equal to the rectangle HG, GO; and BC is consequently found by taking a mean proportional betwixt HG and GO, as is said in the construction: Ard because it was shewn that GO is to GL, as BC to BD , and that now the three first are found, the fourth BD is found by 12.6 . It was likewise shewn that LG is to FE, or GK, as DB to BA, and the three first are now found, and thereby the fourth BA. Make the angle ABC equal to EFG, and complete the parallelogram of which the sides are $A B, B C$, and the construction is finished; the rest of the composition contains the demonstration,

As the propositions from the $13^{\text {th }}$ to the 28 th may be thiought by beginners to be less useful than the rest, because they cannot so readily see how they are to be made use of in the solution of problems; on this account the two following problems are added, to shew that they are equally useful with the other propositions, and from which it may be easily judged that many other problems depend upon these propositions.

PROBLEM I.

ToO find three straight lines such, that the ratio of the first to the second is given; and if a given straight line be taken from the second, the ratio of the remainder to the third is given ; also the rectangle contained by the first and third is given.

EUCLID'S DATA.

Let $A B$ be the first straight line, $C D$ the second, and $E F$ the third : And because the ratio of $A B$ to $C D$ is given, and that if a given straight line be taken from CD, the ratio of the remainder to EF is given; therefore ${ }^{2}$ the excess of the first $\mathrm{AB}=24$. dat. above a given straight line has a given ratio to the third EF: Let BH be that given straight line; therefore AH the excess of AB above it, has a given ratio to EF ; and consequently ${ }^{\circ}$ the rectangle BA, AH, has a given ratio to the rectangle AB, EF, which last rectangle is given by the hypothesis; thuretorec the rectangle BA, AH is given, and BH the excess of its sides is given; wherefore the sides AB, AH are givers ${ }^{d}$: And because the ratios of $A B$ to $C D$, and of $A H$ to K NMI O EF are given, CD and EF are ${ }^{\text {c given. }}$

The Composition.

Let the given ratio of $K L$ to $K M$ be that which $A B$ is required to have to CD ; and let DG be the given straight line which is to be taken from $C D$, and let the given ratio of $K M$ to KN be that which the remainder must have to EF ; also let the given rectangle NK, KO be that to which the rectangle AB, EF is required to be equal : Find the given straight line BH which is to be taken from AB , which is done, as plainly appears from Prop. 24. dat. by making as KM to KL, so GD to HB . To the given straight line BH applye a rectangle equal \cdot \&9. ε_{0} to LK, KO exceeding by a square, and let BA, AH be its sides: Then is AB the first of the straight lines required to be found, and by making as $L K$ to $K M$, so $A B$ to $D C, D C$ will be the second: And lastly, make as KM to KN ; so CG to EF, and EF is the third.

For as $A B$ to $C D$, so is $H B$ to GD, each of these ratios being the same with the ratio of LK to KM ; thereforef AH ? 19. 5. is to CG, as (AB to CD, that is, as) LK to KM; and as CG to EF, so is KM to KN; wherefore, ex æquali, as AH to EF, so is LK to KN : And as the rectangle BA, AH to the rectangle BA, EF, so is8 the rectangle LK, KO to the $: 1.6$. rectangle KN, KO: And by the construction, the rectangle BA, AH is equal to LK, KO : Therefore ${ }^{\text {b }}$ the rectangle $\mathrm{AB},{ }^{1} 14,5$. $E F$ is equal to the given rectangle $N K, K O:$ And $A B$ has to $C D$ the given ratio of $K L$ to $K M$; and from $C D$ the given straight line GD being taken, the remainder CG has to EF the given ratio of KM to KN. Q. E. D.

PROB. II.

To find three straight lines such, that the ratio of the first to the second is given; and if a given straight line be taken from the second, the ratio of the remainder to the third is given; also the sum of the squares of the first and third is given.

Let AB be the first straight line, BC the second, and BD the third: And because the ratio of AB to BC is given, and that if a given straight line be taken from BC , the ratio of the
-24. dat. remainder to BD is given; therefore ${ }_{9}$ the excess of the first AB above a given straight line, has a given ratio to the third BD : Let AE be that given straight line, therefore the remainder EB has a given ratio to BD : Let BD be placed at right angles to EB , and join DE ; then the triangle EBD is ${ }^{\mathrm{b}}$ given in species; wherefore the angle BED is given: Let AE which is given in magnitude, be given also in position, as also the point E, and ${ }^{n} 29$. dat. is given: And the points A, D are given, wherefore ${ }^{h}$ the
e 32 . dat.
d4. 1.
e 34. dat.
f 28 . dat.
8.33. dat.
i 2 . dat. the straight line ED will be givenc in position: Join AD , and because the sum of the squares of $A B, B D$, that isd, the square of $A D$ is given, therefore the straight line $A D$ is given in magnitude; and it is also givene in position, because from the given point A it is drawn to the straight line ED given in position: Therefore the point D , in which the two straight lines AD ,

- 44. dat.

$$
2
$$ ED, given in position, cut one another, is given ${ }^{f}$: And the straight line $D B$, which is at right angles to $A B$, is givens in position, and $A B$ is given in position, therefore the point B straight lines $A B, B D$ are given : And the ratio of $A B$ to $B C$ is given, and therefore ${ }^{i} B C$ is given.

The Composition.

Let the given ratio of $F G$ to $G H$ be that which $A B$ is required to have to BC , and let HK be the given straight line which is to be taken from $B C$, and let the ratio which the

remainder is required to have to BD be the given ratio of HG to LG , and place GLiat right angles to FH , and join LF, LH :

Next,

EUCLID'S DATA.

Next, as HG is to GF, so make HK to AE; produce AE to N , so that AN be the straight line to the square of which the sum of the squares of $A B, B D$ is required to be equal; and make the angle NED equal to the angle GFL; and from the centre A, at the distance AN, describe a circle, and let its circumference meet ED in D , and draw DB perpendicular to AN , and DM making the angle BDM equal to the angle GLH. Lastly, produce $B M$ to C, so that $M C$ be equal to $K H$; then is $A B$ the first, $B C$ the second, and $B D$ the third of the straight lines that were to be found.

For the triangles EBD, FGL, as also DBM, LGH being equiangular, as EB , to BD , so is FG to GL ; and as DB to BM , so is LG to GH ; therefore, ex æquali, as EB to BM , so is (FG to GH, and so is) AE to HK or MC; whereforek, $\times 18.5$. AB is to BC , as AE to HK , that is, as FG to GH , that is, in the given ratio: and from the straight line BC taking MC, which is equal to the given straight line $H K$, the remainder BM has to BD the given ratio of HG to GL: and the sum of the squares of $A B, B D$ is equaid to the square of $A D$ or ${ }^{\$ 471}$ AN, which is the given space. Q. E. D.

I believe it would be in vain to try to deduce the preceding construction from an algebraical solution of the problem.

THE

E L E M E.N T S

OF

PLANE AND SPHERICAL

TRIGONOMETRY.

LONDON:

Priated for F. Wingrave; in the Strand, Suecessor to Mr. Noerse. 1806.

PLANE TRIGONOMETRY.

LEMMA I. Fig. i.

I1 ET ABC be a rectilineal angle, if about the point B as a centre, and with any distance BA, a circle be described, meeting BA, BC, the straight lines including the angle ABC in A, C; the angle $A B C$ will be to four right angles, as the $\operatorname{arch} A C$ to the whole circumference.

Produce $A B$ till it meet the circle again in F, and through B draw DE perpendicular to AB , meeting the circle in D, E.

By 33.6. Elem. the angle $A B C$ is to a right angle $A B D$, 25 the arch $A C$ to the arch $A D$; and quadrupling the consequents, the angle ABC will be to four right angles, as the arch AC to four times the arch AD , or to the whole circumference.

LEMMA II. Fig. 2.

LET ABC be a plane rectilineal angle as before : About B as a centre with any two distances BD, BA; ret two circles be described meeting BA, BC, in $\mathrm{D}, \mathrm{E}, \mathrm{A}, \mathrm{C}$; the arch AC will be to the whole circumference of which it is an arch, as the arch DE is to the whole circumference of which it is 2n arch.

By Leinma I. the arch AC is to the whole circumference of which it is an arch, 25 the angle $A B C$ is to four right angles; and by the same Lemma I . the arch DE is to the whole circumference of which it is an arch, as the angle $A B C$ is to four right angles; therefore tie, arch AC is to the whole circumference of which it is an arch, as the arch DE to the whole circumference of which it is an arch.

DEFINITIONS. Fig. 3.
I.

LET ABC be a plane rectilineal angle; if about B as a centre, with BA any distance, a circle ACF be described, mecting BA, BC, in A, C; the $\operatorname{arch} \mathrm{AC}$ is called the measure of the angle $A B C$.

II.

The circumference of a circle is supposed to be divided into

360 equal parts called degrees, and each degree into 60 equal parts called minutes, and each minute into 60 equal parts called seconds, \&ce. And as many degrees, minutes, seconds, \&c. as are contained in any arch, of so many degrees, minutes, seconds, \&rc. is the angle, of which that,arch is the measure, said to be.
Cor. Whatever be the radius of the circle of which the measure of a given angle is an arch, that arch will contain the same number of degrees, minutes, seconds, \&rc. as is manifest from Lemma 2.

III.

Let $A B$ be produced till it meet the circle again in F, the angle CBF , which, together with ABC , is equal to two right angles, is called the Supplement of the angle ABC.
IV.

A straight line CD drawn through C , one of the extremities of the arch AC perpendicular upon the diameter passing through the other extremity A is called the Sine of the arch $A C$, or of the angle $A B C$, of which it is the measure.
Cor. The Sine of a quadrant, or of a right angle, is equal to the radius.

> V.

The segment DA of the diameter passing through A, one extremity of the arch $A C$ between the sine CD, and that extremity, is called the Versed Sine of the arch AC, or angle ABC .

> VI.

A straight line AE touching the circle at A , one extremity of the arch $A C$, and meeting the diameter BC passing through the other extremity Cin E, is called the Tangent of the arch $A C$, or of the angle $A B C$.

VII.

The straight line BE between the centre and the extremity of the tangent AE, is called the Secant of the arch AC, or angle ABC.
Cor. to def. 4.6.7. the sine, tangent, and secant of any angle $A B C$, are likewise the sine, tangent, and secant of its supplement CBF.
It is manifest from def. 4. that CD is the sine of the angle CBF. Let CB be produced till it meet the circle again in G ; and it is manifest that AE is the tangent, and BE the secant, of the angle $A B G$ or $E B F$, from def. 6. 7.

Cor. to def. $4 \cdot 5 \cdot 6.7$. The sine, versed sine, tangent, and Fig. 4 secant, of any arch which is the measure of any given angle ABC , is to the sine, versed sine, tangent, and secant, of any other arch which is the measure of the same angle, as the radius of the first is to the radius of the second.
Let $A C, M N$ be measures of the angle $A B C$, according to def. I. CD the sine, DA the versed sine, AE the tangent, and BE the secant of the arch AC , according to def. 4-5.6.7. and NO the sine, OM the versed sine, MP the tangent, and $B P$ the secant of the arch $M N$, according to the same definitions. Since $\mathrm{CD}, \mathrm{NO}, \mathrm{AE}, \mathrm{MP}$ are parallel, CD is to NO as the radius $C B$ to the radius $N B$, and $A E$ to $M P$ as $A B$ to BM , and BC or BA to BD , as BN or BM to BO ; and, by conversion, DA to $M O$ as $A B$ to MB. Hence the corollary is manifest; therefore, if the radius be supposed to be divided into any given number of equal parts, the sine, versed sine, tangent, and secant of any given angle, will each contain a given number of these parts; and, by trigonometrical tables, the length of the sine, versed sine, tangent, and secant of any angle may be found in parts of which the radius contains a given number; and, vice versa, a number expressing the length of the sine, versed sine, tangent, and secant being given, the angle of which it is the sine, versed sine, tangent, and secant, may be found.

VIII.

Fig. 3
The difference of an angle from a right angle, is called the somplement of that angle. Thus, if BH be drawn perpendicular to $A B$, the angle $C B H$ will be the compliment of the angle ABC , or of CBF .

IX.

Let HK be the tangent, CL or DB , which is equal to it , the sine, and $B K$ the secant of $C B H$, the complementiof $A B C$, according to def. 4.6.7. HK is called the cotangent, BD the cosine, and BK the cosecant of the angle ABC .
Cor. I. The radius is a mean proportional between the tangent and cotangent.
For, since $H K, B A$ are parallel, the angles $H K B, A B C$ will be equal, and the angles KHB, BAE are right; therefore
the triangles $\mathrm{BAE}, \mathrm{KHB}$ are similar, and therefore AE is to AB , as BH or BA to HK.
Cor. 2. The radius is a mean proportional between the cosine and secant of any angle ABC.
Since $C D, A E$ are parallel, $B D$ is to $B C$ or $B A$, as $B A$ to BE.

PROP. I. Fig. 5.

IN a right angled plane triangle, if the hypothenuse be made radius, the sides become the sines of the angles opposite to them; and if either side be le made radius, the remaining side is the tangent of the angle opposite to it, and the hypothenuse the secant of the same angle.

Let $A B C$ be a right angled triangle; if the hypothenuse BC be made radius, either of the sides AC will be the sine of the angle $A B C$ opposite to it; and if either side BA be made radius, the other side $A C$ will be the tangent of the angle $A B C$ opposite to it, and the hypothenuse BC the secant of the same angle.

About B as a centre, with BC, BA for distances, let two circles CD, EA be described, meeting BA, BC in D, E : Since CAB is a right angle, BC being radius, AC is the sine of the angle $A B C$, by def. 4. and $B A$ being radius, $A C$ is the tangent, and $B C$ the secant of the angle $A B C$, by def. 6. 7.

Cor. I. Of the hypothenuse a side and an angle of a right angled triangle, any two being given, the third is also given.

COR. 2. Of the two sides and an angle of a right angled triangle, any two being given, the third is also given.

> PROP. II. Fig. 6.7.-

THE sides of a plane triangle are to one another, as the sines of the angles opposite to them.

In right angled triangles, this Prop. is manifest from Prop. I. for if the hypothenuse be made radius, the sides are the sines of the angles opposite to them, and the radius is the sine of a right angle (cor. to def. 4.), which is opposite to the hypothenuse.

In any oblique angled triangle $A B C$, any two sides $A B$, $A C$ will be to one another as the sines of the angles $A C B$, $A B C$, which are opposite to them.

From C, B draw CE, BD perpendicular upon the opposite sides $A B, A C$ produced, if need be. Since $C E B, C D B$ are rightangles, BC being radius, CE is the sine of the angle CBA , and BD the sine of the angle ACB ; but the two triangles $\mathrm{CAE}, \mathrm{DAB}$ have each a right angle at D and E ; and likewise the common angle CAB ; therefore they are similar, and consequently, CA is to AB , as CE to DB ; that is, the sides are as the sines of the angles opposite to them.

Cor. Hence of two sides, and two angles opposite to them, in a plain triangle, any three being given, the fourth is also given.

PROP. III. Fig. 8.

IN a plane triangle, thesum of any two sides is to their difference, as the tangent of half the sum of the angles at the base, to the tangent of half their difference.

Let $A B C$ be a plane triangle, the sum of any two sides $A B, A C$ will be to their difference as the tangent of half the sum of the angles at the base $A B C, A C B$ to the tangent of half their difference.

About A as a centre, with AB the greater side for a distance let a circle be described, meeting AC produced in E, F, and BC in D ; join $\mathrm{DA}, \mathrm{EB}, \mathrm{FB}$: and draw FG parallel to BC , meeting EB in G .

The angle EAB (32. r.) is equal to the sum of the angles at the base, and the angle EFB at the circumference is equal to the half of EAB at the centre (20.3.) ; therefore EFB is half the sum of the angles at the base; but the angle $A C B$ (32. r.) is equal to the angles CAD and ADC , or ABC together; therefore FAD is the difference of the angles at the base, and FBD at the circumference, or BFG, on account of the parallels FG, BD, is the half of that difference; but since the angle EBF in a semicircle is a right angle (I. of this), FB being radius, BE, BG are the tangents of the angles EFB , BFG; but it is manifest that EC is the sum of the sides $E A$, $A C$, and CF their difference; and since $B C, F G$ are parallel (2.6.) EC is to CF , as EB to BG ; that is, the sum of the sides

PLANE TRIGONOMETRY.

sides is to their difference, as the tangent of half the sum of the angles at the base to the tangent of half their difference.

PROP. IV. Fic. 18.

IN any plane triangle BAC, whose two sides are $13 \mathrm{~A}, \mathrm{AC}$, and base BC, the less of the two sides which let be BA , is to the greater AC as the radius is to the tangent of an angle, and the rarlius is to the tangent of the excess of this angle above half a right angle as the tangent of half the sum of the angles B and C at the base, is to the tangent of half their difference.

At the point A draw the straight line EAD perpendicular to $B A$; make $A E, A F$, each equal to $A B$, and $A D$ to $A C$; join $\mathrm{BE}, \mathrm{BF}, \mathrm{BD}$, and from D , draw DG perpendicular upon BF . And because BA is at right angles to EF , and EA, AB, AF are equal, eech of the angles $\mathrm{EBA}, \mathrm{ABF}$ is half a right angle, and the whole EBF is a right angle (also 4. I. El.); EB is equal to BF . And since $E B F, F G D$ are right angles, $E B$ is parallel to GD, and the triangles EBF, FGD are similar ; therefore EB is to BF, as DG to GF, and EB being equal to BF, FG must be equal to GD. And because BAD is a right angle, BA the less side is to AD or AC the greater as the radius is to the tangent of the angle $A B D$; and because BGD is a right angle, BG is to GD or GF as the radius is to the tangent of GBD, which is the excess of the angle ABD above ABF half a right angle. But because $E B$ is parallel to $G D, B G$ is to GF as $E D$ is to $D F$, that is, since $E D$ is the sum of the sides $B A, A C$, and $F D$ their difference (3 . of this), as the tangent of half the sum of the angles B, C, at the base to the tangent of half their difference. Therefore, in any plane triangle, \&rc. Q.E.D.

PROP. V. Fig. 9. and 10.

I_{N} any triangle, twice the rectangle contained by any two sides is to the difference of the sum of the squares of these two sides, and the square of the base, as the radius is to the cosine of the angle included by the two sides.

Let $A B C$ be a plane triangle, twise the rectangle $A B D$ contained by any two sides $B A, B C$ is to the difference of the $s u_{m}$

PLANE TRIGONONETRY.

of the squares of $B A, B C$, and the square of the base $A C$, as the radius to the cosine of the angle ABC .

From A, draw AD perpendicular upon the opposite side BC , then (by 12. and 13.2. El.) the difference of the sum of the squares of $A B, B C$, and the square of the base $A C$, is equal to twice the rectangle CBD; but twice the rectangle CBA is to twice the rectangle CBD; that is, to the difference of the sum of the squares of $A B, B C$, and the square of $A C$ (I. 6.) as $A B$ to $B D$; that is, by Prop. I. as radius to the sine of $B A D$, which is the complement of the angle $A B C$. that is, as radius to the cosine of ABC.

PROP. VI. Fig. 11.

IN any triangle ABC , whose two sidesare AB, AC, and hase BC , the rectangle contained hy half the perimeter, and the excess of it above the base BC , is to the rectangle contained by the straight lines by which the half of the perimeter exceeds the other two sides AB, AC, as the square of the radius is to the square of the tangent of half the angle BAC opposite to the base.

Let the angles BAC, ABC be bisected by the straight lines $A G, B G$; and producing the side $A B$, let the exterior angle CBH be bisected by the straight line $B K$, meeting $A G$ in K; and from the points G, K, let there be drawn perpendicular upon the sides the straight lines GD, GE, GF, KH, KL, KM. Since therefore $(4,4$.$) . \mathrm{G}$ is the centre of the circle inscribed in the triangle $\mathrm{ABC}, \mathrm{GD}, \mathrm{GF}$, GE will be equal, and AD will be equal to AE, BD to BF , and CE to CF . In like manner KH, KL, KM will be equal, and BH will be equal to BM and AH to AL, because the angles HBM, HAL are bisected by the straight lines BK, KA: And because in the triangles $\mathrm{KCL}, \mathrm{KCM}$, the sides LK, KM are equal, KC is common, and KLC, KMC are right angles, CL will be equal to CM : Since therefore BM is equal to BH , and CM to CL ; BC will be equal to BH and CL together; and, adding AB and $A C$ together, $A B, A C$, and $B C$ will together be equal to AH and AL together: But AH, AL are equal: Wherefiore each of them is equal to half the perimeter of the triangle $A B C$: But since $A D, A E$ are equal, and $B D, B F$, and also $\mathrm{CE}, \mathrm{CF}, \mathrm{AB}$, tog:ther with FC , will be equal to half the perimeter of the triangle to which Al or AL was shewn to be equal ; taking away therefore the common $A B$, the remainder

PLANE TRIGONOMETRY.

FC will be equal to the remainder BH : In the same manner it is demonstrated, that BF is equal to CL : And since the points B, D, G, F, are in a circle, the angle DGF will be equal to the exterior and opposite angle FBH (22.3.); wherefore their halves $\mathrm{BGD}, \mathrm{HBK}$ will be equal to one another : The right angled triangles $\mathrm{BGD}, \mathrm{HBK}$ will therefore be equiangular, and GD will be to BD , as BH to HK , and the rectangle contained by GD, HK will be equal to the rectangle DBH or BFC: But since AH is to HK, as AD to DG, the rectangle $\mathrm{HAD}(22.6$.) will be to the rectangle contained by $H K, D G$, or the rectangle BFC (as the square of AD is to the square of $D G$, that is) as the square of the radius to the square of the tangent of the angle DAG, that is, the half of BAC: But HA is half the perimeter of the triangle ABC , and AD is the excess of the same above HD, that is, above the base BC ; but BF or CL is the excess of HA or AL above the side AC , and FC , or HB , is the excess of the same HA above the side AB ; therefore the rectangle contained by half the perimeter, and the excess of the saine above the base, viz. the rectangle HAD, is to the rectangle contained by the straight lines by which the half of the perimeter exceeds the other two side, that is, the rectangle BFC, as the square of the radius is to the square of the tangent of half the angle BAC opposite to the base. Q.E.D.

PROP. VII. Fig. 12. 13.
IN a plane triangle, the base is to the sum of the sides as the difference of the sides is to the sum or difference of the segments of the base made by the perpendicular upon it from the vertex, according as the square of the greater side is greater or less than the sum of the squares of the lesser side and the base.
Let ABC be a plane triangle; if from A the vertex be drawn a straight line AD , perpendicular upon the base BC , the base BC will be to the sum of the sides BA, AC, as the difference of the same sides is to the sum or difference of the segments $C D, B D$, according as the square of $A C$ the greater side is greater or less than the sum of the squares of the lesser side $A B$, and the base $B C$.

About A as a centre, with AC the greater side for a distance, let a circle be described meeting $A B$ produced in F , F, and CB in G : It is manifest, that FB is the sum, and BE ,
the difference of the sides ; and since $A D$ is perpendicular to $\mathrm{GC}, \mathrm{GD}, \mathrm{CD}$ will be equal; consequently GB will be equal to the sum or difference of the segments CD, BD, according as the perpendicular AD meets the base produced, or the base; that is (by Conv. 12. 13. 2.), according as the square of $A C$ is greater or less than the sum of the squares of AB, BC : But (by 35.3 .) the rectangle $C B G$ is equal to the rectangle EBF ; that is (16.6.) BC is to BF , as BE is to BG ; that is, the base is to the sum of the sides, as the difference of the sides is to the sum or difference of the segments of the base made by the perpendicular from the vertex, according as the square of the greater side is greater or less than the sum of the squares of the lesser side and the base. Q.E.D.

PROP. VIII. PROB. Fig. 14.

THE sum and difference of two magnitudes being given, to find them.

Half the given sum added to half the given difference, will be the greater, and half the difference subtracted from thalf the sum, will be the less.
For let $A B$ be the given sum, $A C$ the greater, and $B C$ the less. Let AD be half the given sum ; and to AD, DB, which are equal, let $D C$ be added; then $A C$ will be equal to $B D$, and DC together ; that is, to $B C$, and twice $D C$; consequently twice DC is the difference, and DC half that difference; but $A C$ the greater is equal so $A D, D C$; that is, to half the sum added to half the difference, and BC the less is equal to the excess of BD , half the sum, above DC half the difference. Q.E.D.

SCHOLIUM.

Of the six parts of a plain triangle (the three sides and three angles) any three being given, to find the other three is the business of plane trigonometry; and the several cases of that problem may be resolved by means of the preceding propositions, as in the two following, with the tables annexed. In these, the solution is expressed by a fourth proportional oto three given lines ; but if the given parts be expressed by numbers from trigonometrical tables, it may be obtained arithmetically by the common Rule of Three.

Notr. In the tables the following abbreviations are used: R. is put for the Radius; T. for Tanyent; and S. for Sine. Degrees, minutes. seconds, \&c. are written in this manner: $30^{\circ} 25^{\prime} 13^{\prime \prime}, \& c c$, which signifies 20 degrees, 25 minutes, 13 seconds, \&cc.

PLANE TRIGONOMETRY.

SOLUTiON of the Cases of Right Anged Triangles.

GENERAL PROPOSITION.

IN a right angled triangle, of the three sides and three angles, any two being given besides the right angle, the other three may be found, except when the two acute angles are given; in which case the ratios of the sides are only given, being the same with the ratios of the sines of the angles opposite to them.

It is manifest from 47. I. that of the two sides and hypothenuse, if any two be given, the third may also be found. It is also manifest from 32. 1. that if one of the acute angles of a right angled triangle be given, the other is also given, for it is the complement of the former to a right angle.

If two angles of any triangle be given, the third is also given, being the supplement of the two given angles to two right angles.
FIG. 15.
The other cases may be resolved by help of the preceding propositions, as in the following table :

Given. . Sought.

Two sides, AB , AC.	Theangles B, C.	$A B: A C:: R: T, B$, of which C is the complement
$2 \mathrm{AB}, \mathrm{BC}$, a sideand the hypothenuse.	Theangles B, C.	BC : BA :: R : S, C, of which B is the complement
$3 A B, B$, a side and an angle.	The other side AC.	$\mathrm{R}: \mathrm{T}, \mathrm{B}:: \mathrm{BA}: A C$.
4 - $A B$ and B, a side and an angle.	The hypothenuse BC .	S, C : R : : BA : BC.
5 BC and B , the hypothenuse and an angle.	The side AC.	R:S, B : : BC:CA.

These five cases are resolved by Prop. I.

SOLUTION of the Cases of ObliqueAngled Triangles.

GENERAL PROPOSITION.

IN an oblique angled triangle, of the three sides and three angles, any three being given, the other three may be found, except when the three angles are given ; in which case the ratios of the sides are only given, being the same with the ratios of the sines of the angles opposite to them.

Given. Sought.

1	A, B, and therefore C, and the side AB.	BC, AC,	$\begin{aligned} & \begin{array}{l} \text { S, C:S, } A:: A B: B C, \\ \text { and also } S, C: S, B: A B \\ : A C .(2 .) \end{array} \\ & =A \end{aligned}$
2	$A B, A C$, and B, two sides and an angle opposite to one of them.	Theangles A and C.	$A C: A B:: S, B, S, C$, (2.) This case admits of two solutions; for C' may be greater or less than a quadrant. (Cor. todef. 4.)
3	$A B, A C$, and A, two sides, and the included angle.		$\begin{aligned} & A B+A C: A B-A C:: T \\ & C+B T, C-B: \\ & 2 \end{aligned}=$ the sum and difference of the angles C, B, being given, each of them is given. (7.) Otherwise Fig. 18. $B A: A C:: R: T, A B D$, and also $\mathrm{R}: \mathrm{T}, \mathrm{ABD}-45^{\circ}$ $: T, \frac{B+C}{2}: T, \frac{B-C}{2}:(4)$ therefore B and C are given as before. (7.)

(an

TRIGONOMETRICAL CANON.

A Trigonometrical Canon is a Table, which, beginning from one second or one minute, orderly expresses the lengths that every sine, tangent, and secant have, in respect of the radius, which is supposed unity; and is conceived to be divided into 10000000 or more decimal parts. And so the sine, tangent, or secant of an arc, may be had by help of this table; and, contrariwise, a sine, tangent, or secant, being given, we may find the arc it expresses. Take notice, that in the following tract, R signifies the radius, S a sine, Cos. a Cosine, T a tangent, and Cot. a cotangent; also ACq signifies the square of the right line AC ; and the marks or characters,,$+-=,:,::$, and V, are, severally, used to signify addition, subtraction, equality, proportionality, and the extraction of the square root. Again, when a line is drawn over the sum or difference of two quantities, then that sum or difference is to be considered as one quantity.

Constructions of the Trigonometrical Canon.

PROP. I. THEOR.

THE two sides of any right angled triangle being given, the other side is also given.
For (by 47. r.) $A C q=A B q+B C q$ and $A C q-B C q=$ Fig. 2 . ABq and interchangeably $\mathrm{ACq}-\mathrm{ABq}=\mathrm{BC} \mathrm{q}$. Whence, by. the extraction of the square root, there is given $\mathrm{AC}=$ $\sqrt{\overline{A B q}+B C} q$; and $A B=\sqrt{A C q-B C} q$; and $B C=$ $\sqrt{\mathrm{ACq}-\mathrm{AB}}$.

PROP. II. PROB.
T HE sine DE of the arc BD , and the radius CD Fig. 2 . being given, to find the cosine DE .

The radius $C D$, and the sine $D E$, being given in the right angled triangle CDE, there will be given (by the last Prop.) $\sqrt{C D q-D E q}=(C E=) D F$.

PROP. III. PRÓB.

ThE sine DE of any arc DB being given, to find DM or BM, the sine of half the arc.

DE being given, CE (by the last Prop.) will be given, and accordingly EB, which is the difference between the cosine and radius. Therefore DE, EB, being given, in the right angled triangle DBE , there will be given DB , whose half DM is the sine of the arc $\mathrm{DL}=\frac{1}{2}$ the arc BD .

PROP. IV. PROB.

THE sine BM of the arc BL being given, to find the sine of double that arc.

Pig. 29. The sine BM being given, there will be given (by Prop. 2.) the cosine CM . But the triangles $\mathrm{CBM}, \mathrm{DBE}$, are equiangular, because the angles at E and M are right angles, and the angle at B common: Wherefore (by 4.6.) we have CB : CM : : (BD, or) 2 BM : DE. Whence, since the three first terms of this analogy are given, the fourth also, which is the sine of the arc DB, will be known.
Cor. Hence CB : $2 \mathrm{CM}:: \mathrm{BD}: 2 \mathrm{DE}$; that is, the radius is to doubie the cosine of one half of the arc DB , as the subtense of the arc DB is to the subtense of double that arc. Also CB : $2 \mathrm{CM}::(2 \mathrm{BM}: 2 \mathrm{DE}::) \mathrm{BM}: \mathrm{DE}: ; \frac{1}{2} \mathrm{CB}$: - CM . Wherefore the sine of an arc, and the sine of its double, being given, the cosine of the arc itself is given.

PROP. V. PROB.

We. 30. THE sines of two arcs, BD, FD, being given, to find FI, the sine of the sum, as likewise EL, the sine of their difference.

Let the radius CD be drawn, and then CO is the cosine of the arcFD, which accordingly is given, and draw OP through O parallel to DK ; also let OM, GE, be drawn parallei to CB : Then because the triangles $\mathrm{CDK}, \mathrm{COP}, \mathrm{CHI}, \mathrm{FOH}$,

FOM, are equiangular ; in the first place $\mathrm{CD}: \mathrm{DK}:=\mathrm{CO}$: OP, which, consequently, is known. Also we have CD: CK : : FO : FM; and so, likewise, this will be known. But because $\mathrm{FO}=\mathrm{EO}$, then will $\mathrm{FM}=\mathrm{MG}=\mathrm{ON}$; and so OP $+\mathrm{FM}=\mathrm{FI}=$ sine of the sum of the arcs: And OP-FM; that is, $O P-O N=E L=$ sine of the difference of the arcs; which were to be found.

Cor. Because the differences of the arcs $\mathrm{BE}, \mathrm{BD}, \mathrm{BF}$, are equal, the arc BD is all arithmetical mean between the arcs BE, BF.

PROP. VI. THEOR.

THE same Things being supposed, the radius is to double the cosine of the mean arc, as the sine of the difference is to the difference of the sines of the extremes.

For we have $C D: C K:: F O: F M$; whence, by doubling Fig. 3 . the consequents, $\mathrm{CD}: 2 \mathrm{CK}:: \mathrm{FO}:(2 \mathrm{FM}$, or) to FG , which is the difference of the sines, EL, FI. Q. E. D.
Cor. If the arc BD be 60 degrees, the difference of the sines FI, EL, will be equal to the sine FO, of the difference. For, in this case, CK is the sine of 30 degrees; the double whereof is equal to the radius (by 15.4.) ; and so, since CD $=2 \mathrm{CK}$, we shall have $\mathrm{FO}=\mathrm{FG}$. And, consequently if the two arcs BE, BF, are equidistant from the arc of 60 degrees, the difference of the sines will be equal to the sine of the difference FD.

Cor. 2. Hence, if the sines of all arcs distant from one another by a given interval, be given, from the beginning of a quadrant to 60 degrees, the other sines may be found by one addition only. For the sine of 61 degrees $=$ the sine of 59 degrees + the sine of I degree; and the sine of 62 degrees $=$ the sine of 58 degrees + the sine of 2 degres. Also, the sine of 5_{3} Degrees=the sine of 57 degrees + the sine of 3 degrees, and so on.
Cor. 3. If the sines of all arcs, from the beginning of a quadrant to any part of a quadrant, distant from each other by a given interval, be given, thence we may find the sines of all arcs to the double of that - part. For example, let all the sines to 15 degrees be given ; then, by the preceding analogy, all the sines to 30 degrees may be found. For the radius is to double the cosine of 15 degrees, as the sine of I de-
gree is to the difference of the sines of 14 degrees, and 16 degrees: So, also, is the sine of 3 degrees to the difference between the sines of 12 and 18 degrees; and so on continually, until you come to the sine of 30 degrees.

After the same manner, as the radius is to double the cosine of 30 degrees, or to double the sine of 60 degrees, 50 is the sine of I degree to the difference of the sines of 29 and 31 degrees: : sine 2 degrees to the difference of the sines of 28 and 32 degrees : : sine 3 degrees, to the difference of the sines of 27 and 33 degrees. But, in this case, the radius is to double the cosine of 30 degrees, as 1 to $\sqrt{ } 3$.

For (see the figure for Prop. 15, Book IV. of the Elements) the angle $\mathrm{BGC}=60$ degrees, as the arc BC , its measure, is a sixth part of the whole circumference; and the straight line $B C=R$. Hence it is evident that the sine of 30 degrees is equal to half the radius; and therefore, by Prop. 2. the cosine of 30 degrees $=\sqrt{ } \mathrm{R}^{2}-\frac{\mathrm{R}^{2}}{4}=\frac{\sqrt{3 \mathrm{~K}^{2}}}{2}$, and its double $=\sqrt{3 \mathrm{R}^{2}}=\mathrm{R} \times \sqrt{3}$. Consequently, radius is to double the cosine of $30^{\circ}:: \mathrm{R}: \mathrm{R} \times \sqrt{3}:: \mathrm{I}: \sqrt{3}$.

And, accordingly, if the sines of the distances from the arc of 30 degrees, be multiplied by $\sqrt{3}$, the differences of the sines will be had.

So, likewise, may the sines of the minutes in the beginning of the quadrant be found, by having the sine, and cosines of one and two minutes given. For, as the radius is to double the cosine of $2^{\prime}::$ sine $\mathbf{1}^{\prime}$: difference of the sines of $\mathbf{1}^{\prime}$ and $3^{\prime}:$: sine 2 : difference of the sines of 0^{\prime} and 4^{\prime}; that is, to the sine of 4'. And so, the sines of the four first minutes being given, we may thereby find the sines of the others to 8^{\prime} and from thence to 16 ', and so orr.

PROP. VII. THEOR.'

IN smatl arcs, the sines and tangents of the same ares are nearly to one another, in a ratio of equality.

For, because the Triangles CED, CBG, are equiangular, $\mathrm{CE}: \mathrm{CB}:: \mathrm{ED}: \mathrm{BG}$. But as the point E approaches B , $E B$ will vanish in respect of the arc $B D$; whence $C E$
will become nearly equal to CB , and so ED will be also nearly equal to $B G$. If $E B$ be less than the $\frac{1}{10000000}$ part of the radius, then the difference between the sine and the tangent will be also less than the $\frac{1}{10000000}$ part of the tangent.

Cor. Since any arc is less than the tangent, and greater than its sine, and the sine and tangent of a very small arc are nearly equal ; it follows, that the arc will be nearly equal to its sine : And so, in very small arcs, it will be, as arc is to arc, so is sine to sine.

PROP. VIII. PROB.

To0 find the sine of the arc of one minute.

The side of a hexagon inscribed in a circle, that is, the subtense of 60 degrees, is equal to the radius (by Coroll. 15th of the 4 th); and so the half of the radius will be the sime of the arc of 30 degrees. Wherefore the sine of the arc of 30 degrees being given, the sine of the arc of 15 degrees may be found (by Prop. 3.) Also the sine of the arc of 15 degrees being given (by the same Prop.) we may have the sine of 7 degrees 30 minutes. So, likewise, can we find the sine of the half of this, viz. 3 degrees 45 minutes; and so on, until 12 bisections being made, we come to an arc of $52^{2}, 44^{3}, 03^{4}$, 45^{5}, whose cosine is nearly 'equal to the radius; in which case (as is manifest from Prop. 7.) Arcs are proportional to their sines : and so, as the arc of $52^{2}, 44^{3}, 03^{4}, 45^{5}$, is to an arc of one minute, so will the sine before found be to the sine of an arc of one minute, which therefore will be given. And when the sine of one minute is found, then (by Prop, 2. and 4.) the sine and cosine of two minutes will be had.

PROP. IX. THEOR.

IF the angle BAC, being in the periphery of a Fig.se. .circle, be bisected by the right line AD, and if AC be produced until $\mathrm{DE}=\mathrm{AD}$ meets it in E ; then will $\mathrm{CE}=\mathrm{AB}$.

In the quadrilateral figure ABDC (by 22.3.) the angles B and
and DCA are equal to two right angles $=\mathrm{DCE}+\mathrm{DCA}$ (by 13. I.) : whence the angle $B=D C E$. But, likewise, the angle $\mathrm{E}=\mathrm{DAC}($ by 5.1.$)=\mathrm{DAB}$, and $\mathrm{DC}=\mathrm{DB}$: Wherefore the triangles BAD and CED are congruous, and so CE is equal to AB. Q. E.D.

PROP. X. THEOR.

Fig. 33. I.ET the arcs $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}$, \&ic. be equal ; and let the subtenses of the arcs $A B, A C$, AD, AE, \&c. be drawn; then will $\mathrm{AB}: \mathrm{AC}:: \Lambda \mathrm{C}$ $: A B+A D:: A D: A C+A E:: A E: A D+A F:: A F$ $: A E+A G$.

Let AD be produced to H, AE to I, AF to K , and AG to L , so that the triangles $\mathrm{ACH}, \mathrm{ADI}$, AEK, 'AFL, be isosceles ones: Then, because the angle BAD is bisected, we shall have $\mathrm{DH}=\mathrm{AB}$ (by the last Prop.) ; so likewise EI $=A C, F K=A D$, also $G L=A E$.

- But the isosceles triangles $\mathrm{ABC}, \mathrm{ACH}, \mathrm{ADI}, \triangle \mathrm{EK}, \mathrm{AFL}$, because of the equal angles at the bases are equiangular: Wherefore it will be, as $\mathrm{AB}: \mathrm{AC}:: \mathrm{AC}:(\mathrm{AH}=) \mathrm{AB}+$ $A D:: A D:(A I=) A C+A E:: A E:(A K \Rightarrow A D+A F$ $:: A F:(A L=) A E+A G$. Q.E.D.

Cor. I. Because $A B$ is to $A C$, as radius is to double the cosine of $\frac{x}{2}$ the arc AB , (by Coroll. Prop. 4.) it will also be as radius is to double the cosine of $\frac{1}{2}$ the arc $A B$, so is $\frac{1}{2} A B$ $: \frac{1}{2} \mathrm{AC}:: \frac{1}{2} \mathrm{AC}: \frac{1}{2} \mathrm{AB}+\frac{1}{2} \mathrm{AD}:: \frac{1}{2} \mathrm{AD}: \frac{1}{2} \mathrm{AC}+\frac{1}{2} \mathrm{AE}::$ $\frac{1}{2} A E: \frac{1}{2} A D+\frac{1}{2} A F, \& c$. Now let each of the arcs $A B, B C$, CD , \&cc. be 2^{\prime}; then will $\frac{1}{2} \mathrm{AB}$ be the sine of one minute, $\frac{1}{2} \mathrm{AC}$ the sine of 2 minutes, $\frac{I}{2} \mathrm{AD}$ the sine of 3 minutes, $\frac{I}{2} \mathrm{AE}$ the sine of 4 minutes, \&c. Whence, if the sines of one and two minutes be given, we may easily find all the other sines in the following manner.

Let the cosine of the arc of one minute, that is, the sine of the are of 89 deg. 59^{\prime} be called Q; and make the following analogies ; R.: $2 \mathbb{Q}:: \operatorname{Sin} .2^{\prime}: S .1^{\prime}+S .3^{\prime}$. Wherefore the sine of 3 minutes will be given. Also, R.: 2 Q::S. 3^{\prime} : S. $2^{\prime}+$ S. 4^{\prime}. Wherefore the S. 4^{\prime}, is given. And R.: 2 Q $::$ S. $4^{\prime}: S .3^{\prime}+$ S. 5^{\prime}; and so the sine of 5^{\prime} will be had.

Likewise, $R .: 2 Q:: S .5^{\prime}: S 4^{\prime \prime}+S .6^{\prime}$; and so we shall have the sine of 6^{\prime}. And in like manner, the sines of every minute of the quadrant will be given. And because the radius, or the first term of the analogy, is unity, the operations

TRIGONOMETRICAL CANON.

will be with great ease and expedition calculated by multiplication, and contracted by addition. When the sines are found to 60 degrees, all the other sines may be had by addition only, by Cor. I. Prop. 6.

The sines being given, the tangents and secants may be found from the following analogies (see Figure 3, for the definitions) ; because the triangles $\mathrm{BDC}, \mathrm{BAE}, \mathrm{BHK}$ are equiangular, we have
$\mathrm{BD}: \mathrm{DC}:: \mathrm{BA}: \mathrm{AE}$; that is, Cos. : S. : : R. : T.
AE:BA:; BH:HK; that is, T.: R.:: R. : Cot.
$B D: B C:: B A: B E$; that is, Cos. : R. : : R. : Secant.
$C D: B C:: B H: B K$; that is, S. : R. : : R. : Cosec.

r. THE indices or exponents of a series of numbers in geometrical progression, proceeding from 1 , are also called the logarithms of the numbers in that series.* Thus if a denote ariy number, and the geometrical series, $1, a^{1}, a^{2}, a^{3}, a^{4}, \& c$. be produced by actual multiplication, then $\mathrm{r}, 2,3,4$, \&ss. are called the logarithms of the first, second, third, and fourth powers of a respectively. Consequently, if, in the above, a be equal to the number. 2 , then 1 is the logarithm of 2,2 is the logarithm of 4,3 is the logarithm of 8,4 is the logarithm of $16, \& \mathrm{cc}$. But if a be equal to 10 , then I is the logarithm of 10,2 is the logarithm of 100,3 is the logarithm of 1000 , 4 is the logarithm of $10000, \&$ c. The serics may be continued both ways from I. Thus $\frac{\mathbf{1}}{a^{4}}, \frac{1}{a^{3}}, \frac{\mathbf{1}}{a^{2}}, \frac{\mathbf{1}}{a}, 1, a, a^{2}, a^{3}$, $a^{4}, 8 i c$. constitute a series in geometrical progression, and, agreeable to the established notation in algebra, the indices, or lugarithms are $-4,-3,-2,-1,0,1,2,3,4,8 \times c$. If a be equal to the number 2 , then -4 is the logarithm of $\frac{1}{16},-3$ is the logarithm of $\frac{1}{8},-2$ is the logarithm of $\frac{1}{4},-1$ is the logarithm of $\frac{1}{2}, 0$ is the logarithm of $1, I$ is the $\operatorname{logarithm~of~} 2, \& c$. If a be equal to 10 , then -4 is the logarithm of $\frac{1}{10000},-3$ is the logarithm of $\frac{1}{1000},-2$ is the logarithm of $\frac{1}{100},-1$ is the logarithm of $\frac{1}{10}, 0$ is the logarithm of r, and I is the logarithm of $\mathrm{IO}, \& \mathrm{c}$.
2. From the above it is evident, that the logarithms of a series of numbers in geometrical progression, constitute a series of numbers in arithmetical progression. Beginning with I , and proceeding towards the right hand, the terms in the geometrical series are produced by multiplication, but their corresponding logarithms are produced by addition.On the contrary, beginning with r , and proceeding towards the left hand, the terms in the geometrical progression are produced by division, but their corresponding logarithms are produced by subtraction.

The

[^18]
OF LOGARITHMS.

3. The same observations apply to logarithms when they e fractions. Thus if $a^{\frac{1}{n}}$ denote any number, $\frac{1}{a^{\frac{4}{n}}}, \frac{1}{a^{\frac{3}{n}}}, \frac{1}{a^{\frac{2}{n}}}$, $\vec{I}, a^{\frac{x}{n}}, a^{\frac{2}{n}}, a^{\frac{3}{n}}, a^{\frac{4}{n}}, \&$ c. constitute a series of numbers geometrical progression, of which $-\frac{4}{n},-\frac{3}{n},-\frac{2}{n},-\frac{x}{n}$, $\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \frac{4}{n}$, \&c. are the logarithms; and it is evident that e assertions in the last article hold true both with respect the numbers in geometrical progression and their corresrding logarithms. As a and n may be taken at pleasure, follows that numbers in very different geometrical proessions may have the same logarithms; and that the same ies of numbers in geometrical progression may have diffeit series of logarithms corresponding to them.
4. If a be an indefinitely small decimal fraction, and sucsive powers of $I+a$ be raised, then the excess of any power I $+a$ above that immediately preceding it will be indefiely small. Thus let $a=00000000001$, and then $1+a^{2}=$ 3000000000200000000001 ; and $\overline{1+a^{3}}=1 \cdot 00000000003000-$ 20000300000000001 ; and proceeding by actual multiplican to obtain higher powers of 1.00000000001 , it will be ind that the difference between two successive powers is y small. If instead of supposing, as above, that $a=$ 00000000 I , we suppose it only one millionth part of this ue, then the successive powers of $1+a$ will differ from : another by much smaller decimal fractions.
5. If therefore a be indefinitely small, and successive wers of $\mathrm{I}+a$ be raised, a series of numbers in geometrical gression will be produced, of which the common numbers $3,4,5$, \&ic. will become terms. For on every multipliion by $\mathrm{I}+a$, an indefinitely small addition is made to the wer multiplied, and by this indefinitely. small addition, the st higher power is produced. Some power of $\mathrm{I}+a$ will arefore be equal to the number 2 , or so nearly equal to it t they may be considered as equalg Continuing the adrement of the powers of $\mathrm{i}+a$, the numbers $3,4,5$, \&c. the same reasons, will fall into the series.
6. The sum of the logarithms of any two numbers is equal the logarithm of the product of the same two numbers. us if $I+a$ raised to the $n^{\text {tb }}$ power be equal to the number and if $\mathrm{I}+a$ raised to the $\mathrm{m}^{\text {tb }}$ power be equal to the num-
ber M, then, by the preceding articles, n is the logarithm of $\overline{1+a^{n}}$ or of its equal N, and for the same reason m is the logarithm of M. Hence it follows that $n+m=$ the logarithm
 nature of indices. If the logarithm of N be subtracted from the logarithm of M, the difference is equal to the logarithm of the quotient which arises from the division of M by N. For $\frac{M}{N}=\frac{\overline{1+a^{m}}}{\overline{1+a^{n}}}=\overline{1+a^{m-n}}$, by the nature of indices.

The addition of logarithms', therefore, answers to the multiplication of the natural numbers to which they belong; and the subtraction of logarithms answers to the division by the natural numbers to which they belong.
7. If the logarithms of a series of natural numbers be all multiplied by the same number, the several products will have the last-mentioned properties of logarithms. Thus if the indices of all the powers of $1+a$ be multiplied by l, then, using the notation stated in the last article, the logarithm of N is $n l$, and the logarithm of M is $m l$, and the logarithm of $N \times \mathrm{M}$ is $n l+$ $m l$; for $\mathrm{N} \times \mathrm{M}=\overline{1+a^{n l}} \times \overline{1+a^{m l}}=\overline{1+a^{m l}+m l}$, by the nature of indices. Also $m l-n l=$ the logarithm of $\frac{M}{N}$, for $\frac{M}{N}=$ $\frac{\overline{1+a}^{m l}}{\overline{1+a a^{n}}}=\overline{1+a^{m l-n l}}$.

Hence the products arising from the multiplication of l into the indices of the powers of $1+a$, are termed logarithms, as are also all numbers, which have the properties stated at the end of article 6 . It is on account of these properties that logarithms are so very useful in calculations of the highest importance.
8. If the indices of the powers of $I+a$ be multipled by a, the products are called the hyperbolic logarithms of the numbers equal to the powers of $I+a$. Thus if the number N be equal to $\mathrm{I}+a^{n}$, then $n a$ is the hyperbolic logarithm of N : and if the number M be equal to $\overline{\mathrm{I}+a}{ }^{m}$, then ma is the hyperbolic logarithm of M. Hyperbolic logarithms are not thost in common use, but they can be calculated with less labour than any other kind, and common logarithms are obtainec from them.
9. If successive powers of a very small fraction be raisec they will successively be less and less in value. This trutt

OE LOGARITHMS.

appears most evident by putting the value in the form of a vulgar fraction. Thus $\frac{1}{100000}{ }^{2}=\frac{1}{10000000000} ; \frac{1}{100000}{ }^{3}=$ $\frac{1}{1000000000000000}$, \&ic.
10. Let it be required to determine the hyperbolic $\log 2-$ rithm L, of any number N. Using the same notation, as in the preceding articles, $\overline{I+\left.a\right|^{n}}=\mathrm{N}$, and, by extracting the $n^{\text {tix }}$ root of each side of the equation, $1+a=\mathrm{N}^{\frac{x}{n}}$. Put $m=\frac{1}{n}$, and $\mathrm{I}+x=\mathrm{N}$, and then $\mathrm{N}^{\frac{x}{n}}={\overline{1}+x^{m}}_{m}^{m}$ (by the binomial theorem) $1+m x+m \times \frac{m-1}{2} \times x^{2}+m \times \frac{m-1}{2} \times \frac{m-2}{3} \times x^{3}$. $+\& \mathrm{c} .=\mathrm{I}+a$. Now as a is indefinitely small, the power of $\mathrm{I}+a$, which is equal to the number N , must be indefinitely high; or, which is the same thing, n must be indefinitely great. Consequently m must be indefinitely small, and therefore may be rejected from the expressions $m-1, m-2, m-3$, \&ic. Hence I being taker: from each side of the above equation, we have $a=m x-\frac{m x^{2}}{2}+\frac{m x^{3}}{3}-\frac{m x^{4}}{4}+\frac{m x^{5}}{5}$ \&ic. Each side of this equation being divided by m, we have $\frac{a^{2}}{m}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}$ $-\frac{x^{4}}{4}+\frac{x^{5}}{5}-8$ c. But $m=\frac{x}{n}$, and therefore $\frac{a}{m}=a n=x-\frac{x^{2}}{2}+$ $\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\& \mathrm{c} .=\mathrm{L}$, the hyperbolic logarithm of N , by article 8. This series, however, if x be a whole number, does not converge.

Let M be' a whole number, and $\mathrm{M}=\frac{1}{1-x^{\prime}}$, and then x is less than I . For multiplying both sides of the equation by $\mathrm{I}-x$ we have $\mathrm{M}-\mathrm{M} x=\mathrm{I}$, and therefore $\mathrm{I}-\frac{\mathrm{I}}{\mathrm{M}}=x$. Now let $\mathrm{M}=\frac{\mathbf{1}}{\mathbf{1}-x}=\overline{1+a} p$. Then we have $\mathrm{I}+a=\frac{\mathrm{I}}{1-x_{p}^{x}}=$
 $*^{2}-r \times \frac{r-1}{2} \times \frac{r-2}{3} \times x^{3}+\& i c$. But for the same reasons

OF LOGARITHMS.

as above, r must be indefinitely small, and therefore may be rejected from the factors $r-1, r-2, r-3, \& c c$. Conequently, taking I from each side of the above equation, $a=$ $-r x-\frac{r x^{2}}{2}-\frac{r x^{3}}{3}-\frac{r x^{4}}{4}-\frac{r x^{5}}{5}-8 \mathrm{cc}$. But $-r=\frac{1}{p}$, and therefore dividing the left-hand side of the equation by $\frac{1}{\phi}$, and the other by $-r$, we have $a p=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\frac{x^{5}}{5}+$ $\& c .=$ the hyperbolic logarithm of M.
II. As by the last article, the hyperbolic logarithm of N or $\mathrm{I}+x$ is $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\frac{x^{6}}{6}+\frac{x^{7}}{7}-8 \mathrm{cc}$. and as the hyperbolic logarithm of M or $\frac{1}{1-x}$ is $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\frac{x^{5}}{5}$ $\frac{x^{6}}{6}+\frac{x^{7}}{7}+8 \mathrm{c}$. the hyperbolic logarithm of $\mathrm{N} \times \mathrm{M}$, or $\frac{1+x}{1-x}$ is equal to the sum. of these two series, that is, equal to $2 x+$ $\frac{2 . x^{3}}{3}+\frac{2 x^{5}}{5}+\frac{2 x^{7}}{7}+, 8 x$ c. This series converges faster than either of the preceding, and its value may be expressed thus: $2 \times \overline{x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}}+\& \mathrm{c}$.
12. The logarithm of $\frac{n+1}{n}=2 \times \log a r i t h m$ of $\frac{2 n+2}{2 n+1}+$ the logarithm of $\frac{2 n+1)^{2}}{2 n+1)^{2}-1}$. For as the addition of loganrithms answers to the multiplication of the numbers to which they belong, the logarithm of the square of any number, is the logarithm of the number multiplied by 2 . Hence the logarithm of $\frac{2 n+2)^{2}}{2 \overline{n+1})^{2}}$ is $2 \times$ logarithm of $\frac{2 n+2}{2 n+1}$. But $\frac{\overline{2 n+2}^{2}}{2 n-1}{ }^{2}$ $\times \frac{\overline{2 n+1}^{2}}{2 n+I^{2}-1}=\frac{\overline{2 n+2}^{2}}{2 n+I^{2}-1}=\frac{4 n^{2}+8 n+4}{4 n^{2}+4 n}=\frac{n^{2}+2 n+1}{n^{2}+n}=$ $\frac{\overline{n+1} \times \overline{n+1}}{n \times \overline{n+1}}=\frac{n+1}{n}$.

From the preceding articles hyperbolic logarithms may be calculated, as in the following examples.

Example I. Required the hyperbolic logarithm of 2. Put $\frac{n+1}{n}=2$, and then $n=1, \frac{2 n+2}{2 n+1}=\frac{4}{3}$, and $\frac{2 n+1)^{2}}{2 n+1)^{2}-1}$ $=\frac{9}{8}$. In order to proceed by the series in article $I I$, let $\frac{1+x}{1-x}=\frac{4}{3}$, and then $x=\frac{1}{7}$. Consequently

$$
\begin{aligned}
& x=0.14285714286 \\
& \frac{x^{3}}{3}=0.00097181730 \\
& \frac{x^{5}}{5}=0.00001189980 \\
& \frac{x^{7}}{7}=0.00000017347 \\
& \frac{x^{9}}{9}=0.00000000275 \\
& \frac{x^{11}}{11}=0.00000000004
\end{aligned}
$$

Sum of the above terms,- 0.14384103622

Log. of $\frac{1+x}{1-x}$ or $\frac{2 n+2}{2 n+1}$ or $\frac{4}{3}-0.28768207244$
The double of which is 0.57536414488 , and answers to the first part of the expression in article 12.

Secondly, let $\frac{1+x}{1-x}=\frac{9}{8}$, and then $8+8 x=9-9 x$, and π now is equal to $\frac{1}{17}$. Consequently,

$$
\begin{aligned}
& x=0.05882352941 \\
& \frac{x^{3}}{3}=0.00006784721 \\
& \frac{x^{5}}{5}=0.00000014086 \\
& \frac{x^{7}}{7}=0.00000000035
\end{aligned}
$$

$$
\text { Sum of the above terms } \ldots \ldots-\overline{0.05889151783}
$$

$$
\text { Log. of } \frac{\overline{2 n+1})^{2}}{\overline{2 n+1} n^{2}-1} \text { or } \frac{9}{8} \ldots-0.11778303566
$$

OF LOGARITHMS.

which answers to the second part of the expression in artlcle 12. Consequently the hyperbolic logarithm of the number 2 is $0.57536414488+0.1177830356=0.69314718054$.
1..The hyperbolic logarithm of 2 being thus found, that of $4,8,16$, and all the other powers of 2 may be obtained by mutiplying the logarithm of 2 by $2,3,4$, \&c. respectively, as is evident from the properties of logarithms stated in article 6. Thus, by multiplication, the hyperbolic logarithm of $4=1.38629436108$
of $8=2.07944154162$
\&c.
From the above the logarithm of 3 may easily be obtained. For $4 \div \frac{4}{3}=4 \times \frac{3}{4}=3$; and therefore as the logarithm of $\frac{4}{3}$ was determined above, and also the logarithm of 4 .

From the logarithm of 4 , viz. - 1.38629436108 ,

- Subtract the logarithm-of $\frac{4}{3}$, viz. 0.28768207244 ,

And the logarithm of 3 is- 1.0986×228864.
Having found the logarithms of 2 and 3 , we can find, by addition only; the logarithms of, all the powers of 2 and 3 , and also the logarithms of all the numbers which can be produced by multiplication from 2 and 3 . Thus,

To the logarithm of $3, \mathrm{viz} .=-1.0 \mathrm{~g} 861228864$
Add the logarithm of 2 , viz. $\quad-0.69314718054$
And the sum is the logarithm of $6-1.79175946918$.
To this last found add the logarithm of 2 , and the sum 2.48490664972 is the logarithm of 12 .

The hyperbolic logarithms of other prime numbers may be more readily calculated by attending to the following article.
13. Let a, b, c be three numbers in arithmetical progression, whose common difference is I. Let b be the prime number, whose logarithm is sourght, and a and c even numbers whose logarithms are known, or easily obtained from others already computed. Then, a being the least of the three, and the common difference being $1, a=b-1$, and $c=b+1$. Consequently $a \times c=\overline{b-1} \times \overline{b+1}=b^{2}-1$, and $a c+\mathrm{I}=b^{2}$; and therefore $\frac{b^{2}}{a c}=\frac{a c+1}{a c}$. This is a general ex-

OF LOGARITHMS.

pression for the fraction, which it will be proper to put $=$ $\frac{1+x}{1-x}$, that the series expressing the hyperbolic logarithm may converge quickly. For as $\frac{1+x}{1-x}=\frac{a c+1}{a c}, a c+a: x=a c$ $+\mathrm{I}-a c \dot{x}-x$, and therefore $2 a c x+x=\mathrm{I}$, and $x=\frac{\mathrm{I}}{2 a c+\mathbf{1}}$.
Example 2. Required the hyperbolic logarithm of 5 . Here $a=4, c=6$, and $x=\frac{1}{2 a c+1}=\frac{1}{49}$. Consequently,

$$
\begin{aligned}
& x=0.0204081632 \\
& \frac{x^{3}}{3}=0.0000028332 \\
& \frac{x^{5}}{5}=0.0000000007
\end{aligned}
$$

Sum of the above terms, ...-0.020410997s
\log of $\frac{1+x}{1-x}$ or $\frac{25}{24} \ldots 0.0408219942$
But $\frac{25}{24} \times S \times 3=25$, and the addition of Logarithms answers to the multiplication of the natural numbers to which they belong. Consequently,

To the log. of $\frac{25}{24} \ldots \ldots .0408219942$
Add the log. of 8 - - - 2.0794415422
And also the log. of 3 - - -1.0986122890
And the sum is the log. of $25-3.2188758254$
The half of this, viz. 1.6094379127 , is the hyperbolic logerithm of $5 ;$ for $5 \times 5=25$.

Example 3. Required the hyperbolic logarithm of 7 . Here $a=6, c=8$, and $x=\frac{1}{2 a c+1}=\frac{1}{97}$, and $\frac{a c+1}{a \varepsilon}=\frac{1+x}{1-2}=$ $\frac{49}{48}$. Consequently,

$$
\begin{aligned}
& x=0.01030927835 \\
& \frac{x^{3}}{3}=0.00000036522 \\
& \frac{x^{5}}{5}=0.00000000002
\end{aligned}
$$

$$
\text { Sum of the terms }-=--.01030964359
$$

$$
\text { Log. of } \frac{49}{4^{8}}-\ldots--0.02061928718
$$

To which add log. of 8 - - 2.07944154162
And also log. of 6 - - - 1.79175946918
The sum is the log. of $49-3.89 \times 82029798$
For $\frac{49}{48} \times 6 \times 8=49$. Consequently the half of this, viz, 1.94591014899, is the hyperbolic logarithm of 7 ; for 7×7 $=49$.

If the reader perfectly understand the investigations and examples, already given, he will find no difficulty in calculating the hyperbolic logarithms of higher prime numbers. It will only be necessary for him, in order to guard against any embarrassment, to compute them as they advance in succession above those already mentioned. Thus, after what has been done, it would be proper, first of all, to calculate the hyperbolic logarithm of 11 , then that of 13 , \&c.

Proceeding according to the method already explained, it will be found that

The hyperbolic logarithm of 1 I is 2.397895273016

$$
\text { of } 13 \text { is } 2.564999357538
$$

$$
\text { of } 17 \text { is } 2.833213344878
$$

$$
\text { of } 19 \text { is } 2.94443897994
$$

Logarithms were invented by Lord Neper, Baron of Mer_{-} chiston, in Scotland. In the year 1614 he published at Edinburgh a small quarto, containing tables of them, of the hyperbolic kind, and an account of their construction and use. The discovery afforded the highest pleasure to mathematiciaris, as they were fully sensible of the very great utility of logarithms; but it was soon suggested by Mr. Briggs, afterwards Savilian Professor of Geometry in Oxford, that another kind of logarithms would be more convenient, for general purposes,
than the hyperbolic. That one set of logarithms may be obtained from another will readily appear from the following article.
14. It appears from articles 1,3 , and 7 , that if all the logarithms of the geometrical progression $1, \overline{1+a^{2}}, \overline{1+a)^{2}}$, $1+\left.a\right|^{3}, I^{+}, a^{4}, a^{5}$, \& 2 . be multiplied or divided by any given number, the products and also the quotients will likewise be lugarithms, for their addition or subtraction will answer to the multiplication or division of the terms in the geometrical progression to which they belong. The same terms in the geometrical progression may therefore be represented with different sets or kinds of logarithms in the following manner.
$1, \overline{1+a}^{1}, \overline{1+a}^{2}, \overline{1+a}^{3}, \overline{1+a}, \overline{1+a}_{1}^{5}, \overline{1+a} a^{6}, \& c^{6}$
$1, \overline{1+a}^{l}, \overline{1+a}{ }^{2 l}, \overline{1+a^{3}}, \overline{1+a^{3}},\left.\overline{1+a}\right|^{5 l}, \overline{1+a} a^{6 i}$, \&ic.
1, $\overline{1+a^{\frac{1}{m}}}, \overline{1+a^{\frac{2}{m}}}, \overline{1+a^{\frac{3}{m}}}, \overline{1+a^{\frac{4}{m}}}, \overline{1+a^{\frac{5}{m}}}, \overline{1+a^{\frac{6}{m}}}, 8 \mathrm{cc}$.
In these expressions l and m denote any numbers, whole or fractional; and the positive value of the term in the geometrical progression, under the same number in the index, is understood to be the same in each of the three series. Thus if $\overline{1+a}+$ be equal to 7 , then $\overline{1+a}$, is equal to 7 , as is also $\overline{1+a})^{\frac{4}{m}}$. If $\overline{\mathrm{I}+a^{6}}$ be equal to 10 , then $\overline{\mathrm{I}+a^{6 \alpha}}$ is equal to 10 , as is also $\overline{1+a}{ }^{\frac{6}{7}}$, \&ic. If therefore $l, 2 l, 3 l, \& c$. be hyperbolic logarithms, calculated by the methods already explained, the logarithms expressed by $\frac{1}{m}, \frac{2}{m}, \frac{3}{m}, \& i c$. may be derived from them; for the hyperbolic logarithm of any given number is to the logarithm in the last-mentioned set, of the same number, in a given ratio. Thus $4 l: \frac{4}{m}:: 1: \frac{4}{4 l m}=\frac{1}{l m}$;
also $6 l: \frac{6}{m}:: 1: \frac{6}{6 l m}=\frac{\mathrm{r}}{\mathrm{lm}} ;$ \&c.
15. Mr. Briggs's suggestion, above alluded to, was that I should be put for the logarithm of 10 , and consequently 2 for the logarithm of 100,3 for the logarithm of 1000 , \&ic. This proposed alteration appears to have met with the full anprobation of Lord Neper; and Mr. Briggs afterwards, with incredible labour and perseverance, calculated extensive tables
of logarithms of this new kird, which are now called common logarithms. If the expeditious methods for calculating hyperbolic logarithms, explained in the foregoing articles,* ${ }^{*}$ had been known to Mr. Briggs, his trouble would have been comparatively trivial with that which he must have experienced in his operations.
16. It has been already determined that the hyperbolic logarithm of 5 is 1.6094379127 , and that of 2 is 0.69314718054 , and therefore the sum of these logarithms, viz. 2.30258509324 is the hyperbolic logarithm of 10 . If, therefore, for the sake of illustration, as in article 14 , we suppose $\overline{1+a^{6}}=10$, and allow, in addition to the hypothesis there formed, that $\frac{1}{\mathrm{~m}}$, $\frac{2}{m}, \frac{3}{m}, \frac{4}{m}$, \&rc. denote common logarithms, then $61=$ 2.30258509324 , and $\frac{6}{m}=I$; and the ratio for reducing the hyperbolic logarithm of any number to the common logarithm of the same number, is that of 2.30258509324 to I. Thus in order to find the common logarithm of 2, 2.30258509324: I: : 0.69314718054: 0.3010299956, the common logarithm of 2. The common logarithms of 10 and 2 being known, we obtain the common logarithm of 5 , by subtracting the common logarithm of 2 from 1 , the common logarithm of 10 ; for 10 being divided by 2 , the quotient is 5 . Herice the common logarithm of 5 is 0.6989700044 . Again, to find the common logarithm of 3, 2.30258509324 : I : : 1.09861228864: $=4771212546$, the common logarithm of 3 .
17. As the constant ratio, for the reduction of hyperbolic to common logarithms, is that of 2.30258509324 to 1 , it is evident that the reduction may be made by multiplying the hyperbolic logarithm, of the number whose common logarithm is sought, by $\frac{1}{2.30258509324}=4342944818$.

Thus 1.94591014899, the hyperbolic logarithm of 7 , being multiplied by 4342944818 , the product, viz. $.8450980378,8 \mathrm{cc}$. is the common logarithm of 7 .

The common logarithms of prime numbers being derived from the hyperbolic, the common logarithms of other num-

[^19]bers may be obtained from those so derived, merely by addition or subtraction. For addition of logarithms, in any set or kind, answers to the multiplication of the natural numbers to which they belong, and consequently subtraction of logarithms to the division of the natural numbers. Hyperbolic logarithms are not only useful as a medium through which common logarithms may be obtained : they are absolutely necessary for finding the fluents of many fluxional expressions of the highest importance.
It is deemed unnecessary, in this place, to shew the utility of logarithms by examples. - Being once calculated and arranged in tables, not only for common numbers, but also for natural sines, tangents, and secants, it is manifest that a computor may save himself much time, and a great deal of labour, by means of their assistance; as otherwise multiplications and divisions of high numbers, or of decimals to 2 considerable number of places, would enter into his enquiries.

The writer of the foregoing articles now considers the design with which he set out as completed. He has endeavoured to explain, with perspicuity, the first principles of logarithms, and their relations to one another when of different sets or kinds ; and he has laid before the young mathematical student the most improved and expeditious methods by which they may be calculated. If the reader should be desirous of further information on the subject, he may meet with full gratification by a perusal of the history of discoveries and writings relating to logarithms, prefixed to Dr. Hutton's Mathematical Tables. - He will also find the Tables of Logarithms, contained in thạt volume, the most useful for calculations.

A. ROBERTSON,
Sauzilian Professor of Geometry, Oxford.

$$
\mathrm{Kk}_{4}
$$

DEFINITIONS.

I.

THE pole of a circle of the sphere is a point in the super + ficies of the sphere, from which all straight lines drawn to the circumference of the circle are equal.

II.

A great circle of the sphere is any whose plane passes through the centre of the sphere, and whose centre therefore is the same with that of the sphere.

> III.

A spherical triangle is a figure upon the superficies of a sphere comprehended by three arches of three great circles, each of which is less than a semicircle.
IV.

A spherical angle is that which on the superficies of a sphere is contained by two arches of great circles, and is the same with the inclination of the planes of these great circles.

PROP. I.
Great circles bisect one another.
As they have a common centre, their common section will be a diameter of each which will bisect them.

> PROP. II. Fig. i.

THE arch of a great circle betwixt the pole and the circumference of another is a quadrant.

Let $A B C$ be a great circle, and D its pole; if a great circle $D C$ pass through D, and meet $A B C$ in C, the arch $D C$ will be a quadrant.

Let the great circle CD meet ABC again in A, and let $A C$ be the common section of the great circle, which will

SPHERICAL TRIGONOMETRY.

pass through E the centre of the sphere : Join $\mathrm{DE}, \mathrm{DA}, \mathrm{DC}$: By def. s. DA, DC are equal, and AE, EC are also equal, and DE is common ; therefore (8. 1.) the angles DEA, DEC are equal ; wherefore the arches DA, DC are equal, and consequently each of them is a quadrant. Q. E. D.

$$
\text { PROP. III. Fic. } 2 .
$$

IF a great circle be described meeting two great circles $A B, A C$ passing through its pole A in B, C, the angle of the centre of the sphere upon the circumference BC , is the same with the spherical angle BAC , and the arch BC is called the measure of the spherical angle BAC.

Let the planes of the great circles $A B, A C$ intersect one another in the straight line AD passing through D their common centré ; join DB, DC.

Since A is the pole of $\mathrm{BC}, \mathrm{AB}, \mathrm{AC}$ will be quadrants, and the angles $\mathrm{ADB}, \mathrm{ADC}$ right angles ; therefore (6. def. II.) the angle CDB is the inclination of the planes of the circles AB , AC ; that is, (def. 4.) the spherical angle BAC. Q. E. D.

Cor. If through the point A, two quadrants- AB, AC, be drawn, the point A will be the pole of the great circle BC , passing through their extremities B, C.

Join $A C$, and draw AE, a straight line to any other point E , in BC ; join DE : Since AC, AB are quadrants, the angles $\mathrm{ADB}, \mathrm{ADC}$ are right angles, and AD will be perpendicular to the plane of BC : Therefore the angle ADE is a right angle, and AD, DC are equal to AD, DE, each to each ; therefore $A E, A C$ are equal, and A is the pole of $B C$, by def. I. Q. E. D.

PROP. IV. Fig. 3.
IN isosceles spherical triangles, the angles at the base are equal,

Let ABC be an isosceles triangle, and AC, CB the equal sides; the angles $B A C, A B C$ at the base $A B$, are equal.

SPERICAL TRIGONOMETRY.

Let D be the centre of the sphere, and join $\mathrm{DA}, \mathrm{DB}, \mathrm{DC}$; in $D A$ take any point E, from which draw, in the plane $A D C$, the straight line EF at right angles to ED , meeting CD in F , and draw, in the plane $\mathrm{ADB}, \mathrm{EG}$ at right angles to the same ED ; therefore the rectilineal angle FEG is (6 , def. 11.) the inclinatiori of the planes $\mathrm{ADC}, \mathrm{ADB}$, and therefore is the same with the spherical angle BAC : From F draw FH perpendicular to $D B$, and from H draw, in the plane $A D B$, the straight line HG at right angles to HD, meeting EG in G, and join GF. Because DE is at right angles to EF and EG, it is perpendicular to the plane FEG (4. II.), and therefore the plane FEG is perpendicular to the plane ADB, in which DE is: (18. II.) In the same manner, the plane FHG is perpendicular to the plane ADB; and thercfore GF the common section of the planes FEG, FHG is perpendicular to the plane ADB; (19. Ir.) and because the angle FHG is the inclination of the planes BDC, BDA, it is the same with the spherical angle ABC ; and the sides AC, CB of the spherical triangle being equal, the angles EDF, HDF, which stand upon them at the centre of the sphere, are equal; and in the triangles EDF, HDF , the side DF is common, and the angles $\mathrm{DEF}, \mathrm{DHF}$ are right angles; therefore EF, FH are equal ; and in the triangles FEG, FHG the side GF is common, and the sides EG, GH, will be equal by the 47.1 . and therefore the angle FFG is equal to FHG (8. r.); that is, the spherical angle BAC is equal to the spherical angle ABC .

$$
\text { PROP. V. FIG. } 3
$$

IF , in a spherical triangle ABC , two of the angles $\mathrm{BAC}, \mathrm{ABC}$ be equal, the sides BC, AC opposite to them are equal.

Read the construction and demonstration of the preceding proposition, unto the words, " and the sides AC, CB," \&c. and the rest of the demonstration will be as follows, viz.

And the spherical angles $B A C, A B C$ being equal, the rectilineal angles FEG, FHG, which are the same with them are equal ; and in the triangles $\mathrm{FGE}, \mathrm{FGH}$ the angles at G are right angles, and the side FG epposite to two of the equal angles

SPHERICAL TRIGONOMETRY.

angles is common; therefore (26.1.) EF is equal to FH : And in the right angled triangles DEF, DHF, the side DF is common; wherefore (47.1 .) ED is equal to DH , and the angles EDF, HDF are therefore equal (4. I.), and consequently the sides $A C, B C$ of the spherical triangle are equal.

$$
\text { PROP. VI. Fig. } 4 .
$$

ANy two sides of a spherical triangle are greater than the third.

Let $A B C$ be a spherical triangle, any two sides $A B, B C$ will be greater than the other side AC.

Let D be the centre of the sphere: Join DA, DB, DC.
The solid angle at D is contained by three plane angles, $\triangle \mathrm{DB}, \mathrm{ADC}, \mathrm{BDC}$; and by 20. II. any two of them ADB, BDC are greater than the third ADC ; that is, any two sides $A B, B C$ of the spherical triangle $A B C$, are greater than the third $A C$.

PROP. VII. Fig. 4.

T
HE three sides of a spherical triangle are less than a circle.

Let $A B C$ be a spherical triangle as before, the three sides $A B, B C, A C$ are less than a circle.

Let D be the centre of the sphere : The solid angle at D is contained by three plane angles $\mathrm{BDA}, \mathrm{BDC}, \mathrm{ADC}$, which together are less than four right angles (21. 11.); therefore the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$ together, will be less than four quadrants, that is, less than a circle.

PROP, VIII. Fig. 5.

IIN a spherical triangle the greater angle is opposite to the greater side; and conversely.

Let $A B C$ be a spherical triangle, the greater angle A is opposed to the greater side BC.

Let the angle BAD be made equal to the angle B , and then BD, DA will be equal (5. of this), and therefore AD ,

DC are equal to BC ; but. AD, DC are greater than $\mathrm{AC}(6$; of this), therefore $B C$ is greater than $A C$, that is, the greater angle A is opposite to the greater side BC. The converse is demonstrated as Prop، 19. r. El. Q. E. D.

PROP. IX, Fig. 6 :

IN any spherical triangle $A B C$, if the sum of the sides AB, BC, be greater, equal, or less than a semicircle, the internal angle at the base $A C$ will be greater, equal, or less than the external and opposite BCD ; and therefore the sum of the angles A and ACB will be greater, equal, or less than two right angles.

Let $A C, A B$ produced meet in D.
I. If $A B, B C$ be equal to a semicircle, that is, to $A D, B C$, $B D$ will be equal, that is (4 of this), the angle D, or the angle A will be equal to the angle $B C D$.
2. If $A B, B C$ together be greater than a semicircle, that is, greater than $A B D, B C$ will be greater than $B D$; and therefore (8 of this), the angle D, that is, the angle A, is greater than the angle BCD .
3. In the same manner it is shewn, that if $A B, B C$ together be less than a semicircle, the angle A is less than the angle BCD . And since the angles $\mathrm{BCD}, \mathrm{BCA}$ are equal to two right angles, if the angle A be greater than BCD, A and ACB together will be greater than two right angles. If A be equal to BCD, A and ACB together will be equal to two right angles; and if A be less than $B C D, A$ and $A C B$ will be less than two right angles. Q. E. D.

$$
\text { PROP. X. Fig. } 7 .
$$

IF the angular points, A, B, C of the spherical triangle $A B C$ be the poles of three great circles, these great circles by their intersections will form another triangle FDE, which is called supplemental to the former ; that is, the sides $\mathrm{FD}, \mathrm{DE}, \mathrm{EF}$ are the supplements
supplements of the measures of the opposite aingles C, B, A, of the triangle $A B C$, and the measures of the angles $\mathrm{F}, \mathrm{D}, \mathrm{E}$ of the triangle FDE , will be the supplements of the sides $\mathrm{AC}, \mathrm{BC}, \mathrm{BA}$, in the triangle ABC .

Let $A B$ produced meet $D E, E F$, in G, M, and $A C$ meet $F D, F E$ in K, L, and $B C$ meet $F D, D E$ in N, H.

Since A is the pole of FE, and the circle AC passes through A, EF will pass through the pole of AC (13.15. I. Th.), and since AC passes through C, the pole of ED, FD will pass through the pole of $A C$; therefore the pole of $A C$ is in the point F , in which the arches DF, EF intersect each other. In the same manner, D is the pole of $B C$, and E the pole of $A B$.

And since F, E are the poles of AL, AM, FL and EM are quadrants, and FL, EM together, that is, FE and ML together, are equal to a semicircle. But since A is the pole of $M L$, ML is the measure of the angle BAC , consequently FE is the supplement of the measure of the angle BAC. In the same manner, ED, DF are the supplements of the measures of the angles $\mathrm{ABC}, \mathrm{BCA}$.

Since likewise CN, BH are quadrants, CN, BH together, that is, NH, BC together are equal to a semicircle; and since D is the pole of NH, NH is the measure of the angle FDE, therefore the measure of the angle FDE is the supplement of the side $B C$. In the same manner, it is shewn that the measures of the angles DEF, EFD are the supplements of the sides $A B, A C$ in the triangle $A B C, Q . E . D$.

PROP. XI. Fig. 7.
THE three angles of a spherical triangle are greater than two right angles, and less than six right angles.

Thie measures of the angles A, B, C, in the triangle $A B C$, together with the three sides of the supplemental triangle DEF , are (10. of this) equal to three semicircles; but the three sides of the triangle FDE, are (7. of this) less than two semicircles;
therefore
therefore the measures of the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are greater than a semicircle; and hence the angles A, B, C are greater than two right angles.

All the external and internal angles of any triangle are equal to six right angles; therefore all the internal angles are less than six right angles,

PROP. XII. Fig. 8.

IF from ary point C, which is not the pole of the great circle ABD, there be drawn arches of great circles $\mathrm{CA}, \mathrm{CD}, \mathrm{CE}, \mathrm{CF}$, s-c. the greatest of thesc is CA , which passes through H the pole of ABD , and CB the remainder of $\triangle \mathrm{CB}$ is the least, and of any others $\mathrm{CD}, \mathrm{CE}, \mathrm{CF}, \& \mathrm{sc} . \mathrm{CD}$, which is nearer to CA , is greater than CE , which is more remote.

Let the common section of the planes of the great circles $\Lambda C B, A D B$ be $A B$; and from C, draw CG perpendicular to $A B$, which will also be perpendicular to the plane $A D B$ (4 . def. Ir.) ; join GD, GE, GF, CD, CE, CF, CA, CB.

Of all the straight lines drawn from G to the circumference $\mathrm{ADB}, \mathrm{GA}$ is the greatest, and GB the least (7.3.) ; and GD, which is nearer to GA, is greater than GE, which is more remote. The triangles CGA, CGD, are right angled at G_{3} and they have the common side CG; therefore the squares of CG, GA together, that is, the square of CA, is greater than the squares of $C G, G D$ together, that is, the square of $C D$: And CA is greater than CD , and therefore the arch CA is greater than. CD . In the same manner, since GD is greater than GE, and GE than GF, \&c. it is shewn that CD is greater than CE , and CE than $\mathrm{CF}, \& \mathrm{c}$. and consequentiy, the arch CD greater than the arch CE, and the arch CE greater than the arch CF, \&rc. And since $G A$ is the greatest, and GB the least of all the straight lines drawn from G to the circumference ADB , it is manifest that C .1 is the greatest, and CB the least of all the straight lines drawn from C to the circumference: And therefore the arch CA is the greatest, and CB the least of all the circles drawn through C , meeting $A D B . \quad$ Q. E. D.

PROP. XIII. Fig. g.

IN a right angled spherical triangle, the sides are of the same affection with the opposite angles; that is, if the sides be greater or less than quadrants, the opposite angles will be greater or less than right angles.

Let $A B C$ be a sphericaltriangle right-angled at A; any side $A B$, will be of the same affection with the opposite angle $A C B$.
Case I. Let AB be less than a quadrant, let AE be a quadrant, and let EC be a great circle passing through E, C. Since A is a right angle, and AE a quadrant, E is the pole of the great circle AC , and ECA a right angle; but ECA is greater than $B C A$, therefore $B C A$ is less than a right angle: Q. E. D.

Case 2. Let AB be greater than a quadrant, make AE a Fic. 10 . quadrant, and let a great circle pass through $\mathrm{C}, \mathrm{E}, \mathrm{ECA}$ is a right angle as before, and BCA is greater than ECA, that is, greater than a right angle. Q. E. D.

PROP. XIV.

IF the two sides of a right angled spherical triangle be of the same affection, the hypothenuse will be less than a quadrant; and if they be of different affection, the hypothenuse will be greater than a quadrant.

Let $A B C$ be a right angled spherical triangle, if the two sides $A B, A C$, be of the same or of different affection, the hypothenuse BC will be less or greater than a quadrant.

Case I. Let AB, AC be each less than a quadrant. Let Fic.?. AE, AG be quadranits; G will be the pole of AB , and E the pole of AC , and EC a quadrant; but, by Prop. 12. CE is greater than CB , since CB is farther off from CGD than CE. In the same manner, it is shewn that CB , in the triangle CBD, where the two silts CD, BD are each greater than a quadrant, is less than CE, tiat is, less than a quadrant. Q.E. D.

Case 2. Let $A C$ be less, and $A B$ greater than a quadrant; then the hypotheneuse BC will begreater than a quadrant; for let AE be a quadrant, then E is the pole of AC , and EC will be a quadrant. But CB is greater than CE by Prop. 12. since $A C$ passes through the pole of $A B D$. Q.E.D.

> PROP. XV.

IF the hypotheneuse of a right angled triangle be greater or less than a quadrant, the sides will be of different or the same affection.

This is the converse of the preceding, and demonstrated in the same manner.

PROP. XVI.
IN any spherical triangle ABC , if the perpendieular AD from A on the base BC , fall within the triangle, the angles B and C at the base will be of the same affection; and if the perpendicular fall without the triangle, the angles B and C will be of different affection.

Fic. 11.

Fic. 12 :

1. Let AD fall within the triangle; then (13 of this) since $\mathrm{ADB}, \mathrm{ADC}$ are right angled spherical triangles, the angles B, C must each be of the same affection as AD .
2. Let AD fall without the triangle, then (13. of this) the angle B is of the same affection as AD ; and by the same the angle $A C D$ is of the same affection as $A D$; therefore the angle $A C B$ and $A D$ are of different affection, and the angles B and $A C B$ of different affection.

Cor. Hence if the angles B and C be of the same affection, the perpendicular will fall within the base; for, if it did not (r6 of this), B and C would be of different affection. And if the angles B and C be of opposite affection, the perpendicular will fall without the triangle; for, if it did not, (16 of this), the angles B and C would be of the same affection, contrary to the supposition.

PROP. XVII. Fig. iz.

IN right angled spherical triangles, the sine of either of the sides about the right angle, is to the radius of the sphere, as the tangent of the remaining side is to the tangent of the angle opposite to that side.

Let $A B C$ be a triangle, having the right angle at A; and let $A B$ be either of the sides, the sine of the side $A B$ will be to the radius, as the tangent of the other side $A C$ to the tangent of the angle $A B C$, opposite to $A C$. Let D be the centre of the sphere ; join $\mathrm{AD}, \mathrm{BD}, \mathrm{CD}$, and let AE be drawn perpendicular to BD , which therefore will be the sine of the arch $A B$, and from the point E, let there be drawn in the plane BDC the straight line $E F$ at right angles to BD , meeting $D C$ in F, and let $A F$ be joined. Since therefore the straight line $D E$ is at right angles to both $E A$ and $E F$, it will also be at right angles to the plane AEF ($4 . \mathrm{II}$.), wherefore the plane ABD, which passes through $D E$ is perpendicular to the plane AEF (18 II.), and the plane $A E F$ perpendicular to $A B D$: The plane ACD or AFD is also perpendicular to the same ABD: Therefore the common section, viz. the straight line $A F$, is at right angles to the plane $A B D$ (19. II.): And FAF, FAD are right angles (3 . def. 11.); therefore ΛF is the tangent of the arch $\AA \mathrm{AC}$; and in the rectilineal triangle AEF having a right angle at A, AE will be to the radius as AF to the tangent of the angle AEF (IPl. Tr.); but AE is the sine of the arch $A B$, and $A F$ the tangent of the arch $A C$, and the angle AEF is the inclination of the planes $\mathrm{CBD}, \mathrm{ABD}(6$. def. ir.), or the spherical angle $A B C$: Therefore the sine of the arch AB is to the radius as the tanzent of the arch AC , to the tangent of the opposite angle $A B C$.

Cor. I. If cherefore of the two sides, and an angle opposite to one of them, any two be given, the third will also be given.

Cor. 2. And since by this proposition the sine of the side $A B$ is to the radius, as the tangent of the other side $A C$ to the
tangent of the angle ABC opposite to that side; and as the radius is to the cotangent of the angle ABC , so - is the tangent of the same angle ABC to the radius (Cor. 2. def. PI. ' Γ r.), by equality, the sine of the side $A B$ is to the cotangent of the angle $A B C$ adjacent to $i t$, as the tangent of the other side $A C$ to the radius.

PROP. XVIII, FIG. 13.

IN right angled spherical triangles, the sine of the hypothenuse is to the radius, as the sine of either side is to the sine of the angle opposite to that side.

Let the triangle $A B C$ be right angled at A, and let $A C$ be either of the sides; the sine of the hypothenuse $B C$ will be to the radius as the sine of the arch AC is to the sine of the angle $A B C$.

Let D be the centre of the sphere, and let CG be drawn perpendicular to DB, which will therefore be the sine of the hypothenuse BC ; and from the point G let there be drawn is the plane ABD the straight line GH perpendicular to DB , and let CH be joined; CH will be at right angles to the plane $A B D$, as was shewn in the preceding proposition of the straight line FA: Wherefore CHD, CHG are right angles, and CH is the sine of the arch AC ; and in the triangle CHG, having the right angle CHG; CG is to the radius as CH to the sine of the angle CGH (1. Pl. Tr.) : But since CG, HG are at right angles to DGB , which is the common section of the planes $C B D, A B D$, the angle $C G H$ will be equal to the inclination of these planes (6. def. II.) that is, to the spherical angle $A B C$. The sine therefore of the hypothenuse $C B$, is to the radius as the sine of the side $A C$ is to the sine of the opposite angle $A B C$. Q.E.D.

Coz. Of these three, viz. the hypothenuse, a side, and the angle opposite to that side, any two being given, the third is also given by Prop. 2.

PROP. XIX. Fig. 14.

IN right angled spherical triangles, the cosine of the hypothenuse is to the radius as the cotangent of either of the angles is to the tangent of the remaining angle.

Let $A B C$ be a spherical triangle, having a right angle at A, the cosine of the hypothenuse BC will be to the radius as the cotangent of the angle $A B C$ to the tangent of the angle $A C B$.

Describe the circle DE, of which B is the pole, and let it meet AC in F and the circle BC in E : and since the circle BD passes through the pole B of the circle DF, DF will also pass through the pole of BD. (13.15.1. Thead. Sph.) And since ΛC is perpendicular to $B D, A C$ will also pass through the pole of BD ; wherefore the pole of the circle BD will be found in the point where the circles AC, DE meet, that is, in the point F : The arches FA, FD are therefore quadrants, and likewise the arches $\mathrm{BD}, \mathrm{BE}:$ In the triangle CEF , right angled at the point $E, C E$ is the complement of the hypothenuse $B C$ of the triangle $\mathrm{ABC}, \mathrm{EF}$ is the complement of the arch ED , which is the measure of the angle ABC , and FC the hypothenuse of the triangle CEF, is the complement of AC , and the arch AD , which is the measure of the angle CFE, is the complement of $A B$.

But (17. of this) in the triangle CEF, the sine of the side CE is to the radius, as the tangent of the other side is to the tangent of the angle ECF opposite to it, that is, in the triangle ABC , the cosine of the hypotkenuse BC is to the radius, as the cotangent of the angle ABC is to the tangent of the angle ACB. Q.E. D.

Cor... I. Of these three, viz. the hypothenuse and the two angles, any two being given, the third will also be given.

Cor. 2. And since by this proposition the cosine of the hypothenuse BC is to the radius, as the cotangent of the angle ABC to the tangent of the angle ACB . But as the radius is to the cotangent of the angle $A C B$, so is the tangent of the same to the radius (Cor. 2. def. Pl. Tr.); and, ex æguo, the cosine of the hypothenuse BC is to the cotangent
of the angle $A C B$, as the cotangent of the angle $A B C$ to the radius.

PROP. XX. Fig. 14.

IN right angled spherical triangles, the cosine of an angle is to the radius, as the tangent of the side adjacent to that angle is to the tangent of the hypothenuse.
'The same construction remaining'; in the triangle CEF, (17. of this) the sine of the side EF is to the radius, as the tangent of the other side CE is to the tangent of the angle CFE opposite to it ; that is, in the triangle ABC , the cosine of the angle ABC is to the radius as (the cotangent of the hypothenuse $B C$ to the cotangent of the side $A B$, adjacent to $A B C$ or as) the tangent of the side $A B$ to the tangent of the hypothenuse, since the tangents of two arches are reciprocally proportional to their cotangent. (Cor. I. def. Pl. Tr.)

Cor. And since by this proposition the cosine of the angle $A B C$ is to the radius, as the tangent of the side $A B$ is to the tangent of the hypothenuse BC ; and as the radius is to the cotangent of BC , so is the tangent of BC to the radius; by équality, the cosine of the angle ABC will be to the cotangent of the hypothenuse $B C$, as the tangent of the side $A B$, adjacent to the angle ABC , to the radius.

PROP. XXI. Fig. 14.

IN right angled spherical triangles, the cosine of either of the sides is to the radius, as the cosine of the hypothenuse is to the cosine of the other side.

The same construction remaining; in the triangle CEF, the sine of the hypothenuse CF is to the radius, as the sine of the side CE to the sine of the opposite angle CFE (18. of this); that is, in the triangle ABG the cosine of the side CA is to the radius as the cosine of the hypothenuse BC to the cosine of the other side BA. Q. E. D. .

PROB. XXII. Fig. if.

IN right angled spherical triangles, the cosine of either of the sides is to the radius, as the cosine of the angle opposite to that side is to the sine of the other angle.

The same constrution remaining; in the triangle CEF, the sine of the hypothenuse CF is to the radius as the sine of the side EF is to the sine of the angle ECF opposite to it ; that is, in the triangle ABC , the cosine of the side CA is to the radius, as the cosine of the angle ABC opposite to $i t$, is to the sine of the other angle. Q. E. D.

$$
\mathrm{L}_{1}
$$

OF THE CIRCULAR PARTS.

Fig. 15.

1N any right angled spherical triangle ABC , the complement of the hypothenuse, the complements of the angles, and the two sides are called The circular parts of the triangle, as if it were following each other in a circular order, from whatever, part we begin: Thus, if we begin at the complement of the hypothenuse, and proceed towards the side BA, the parts following in order will be the complement of the hypothenuse, the complement of the angle B , the side BA the side AC (for the right angle at A is not reckoned among the parts), and, lastly, the complement of the angle C. And thus at whatever part we begin, if any three of these five be taken, they either will be all contiguous or adjacent, or one of them will not be contiguous either of the other two: In the first case, the part which is between the other two is called the Middle part, and the other two are called Adjacent extremes. In the second case, the part which is not contiguous to either of the other two is called the Middle part, and the other two Opposite extremes. For example, if the three parts be the complement of the hypothenuse BC , the complement of the angle B , and the , side BA; since these three are contiguous to each other, the complement of the angle B will be the middle part, and the complement of the hypothenuse $B C$ and the side $B A$ will be adjacent extremes: But if the complement of the hypothenuse BC and the sides BA, AC be taker; since the complement of the hypothenuse is not adjacent to either of the sides, viz. on account of the complements of the two angles B and C intervening between it and the sides, the complement of the hypothenuse $B C$ will be the middle part, and the sides $B A, A C$ opposite extremes. The most acute and ingenious Baron Napier, the inventor of Logarithms, contrived the two following rules concerning these parts, by means of which all the cases of right angled spherical triangles are resolved with the greatest ease.

RULE I.

The rectangle contained by the radius and the sine of the middle part is equal to the rectangle contained by the tangents of the adjacent parts.

RULE II.

The rectangle contained by the radius, and the sine of the middle part, is equal to the rectangle contained by the cosines of the opposite parts.
These rules are demonstrated in the following manner :
First, Let either of the sides, as BA, be the middle part, Fig. 16. and therefore the complement of the angle B , and the side AC , will be adjacent extremes. And by cor. 2. prop. 17. of this, S, BA , is to the $\mathrm{Co}-\mathrm{T}, \mathrm{B}$, as T, AC is to the radius, and therefore $\mathrm{R} \times \mathrm{S}, \mathrm{BA}=\mathrm{Co}-\mathrm{T}, \mathrm{B} \times \mathrm{T}, \mathrm{AC}$.

The same side BA being the middle part, the complement of the hypothenuse, and the complement of the angle C , are opposite extremes; and by Prop. I8.S, BC is to the radius, as S, BA to S, C; therefore $\mathrm{R} \times \mathrm{S}, \mathrm{BA}=\mathrm{S}, \mathrm{BC} \times \mathrm{S}, \mathrm{C}$.

Secondly, Let the complement of one of the angles, as B, be the middle part, and the complement of the hypothenuse, and the side BA will be adjacent extremes: And by Cor. Prop. 20. Co-S, B is to $\mathrm{Co}-\mathrm{T}, \mathrm{BC}$, as T, BA is to the radius, and therefore $\mathrm{R} \times \mathrm{Co}-\mathrm{S}, \mathrm{B}=\mathrm{Co}-\mathrm{T}, \mathrm{BC} \times \mathrm{T}, \mathrm{BA}$.
Again, Let the complement of the angle B be the middle part, and the complement of the angle C , and the side AC will be opposite extremes: And by Prop. 22. Co-S, AC is to the radias, as Co-S, B is to S, C : And therefore $\mathrm{R} \times \mathrm{Co}-\mathrm{S}$, $B=C o S, A C \times S, C$.
Thirdly, Let the complement of the hypothenuse be the middle part, and the complements of the angles B, C, will be adjacent extremes: But by Cor. 2. Prop. 19. Co-S, BC is to $\mathrm{Co}-\mathrm{T}, \mathrm{B}$ as Co . T, B to the radius: Therefore $\mathrm{R} \times \mathrm{Co}-\mathrm{S}$, $\mathrm{BC}=\mathrm{Co}-\mathrm{T}, \mathrm{C} \times \mathrm{Co}^{-} \mathrm{T}, \mathrm{C}$.

Again, Let the complement of the hypothenuse be the middle part, and the sides $A B, A C$ will be opposite extremes: But by Prop. 2I. Co-S, AC is to the radius, $\mathrm{Co}-\mathrm{S}, \mathrm{BC}$ to $\mathrm{Co}-\mathrm{S}, \mathrm{BA}$; therefore $\mathrm{R} \times \mathrm{Co}-\mathrm{S}, \mathrm{BC}=\mathrm{Co}-\mathrm{S}, \mathrm{BA} \times \mathrm{Co}-\mathrm{S}$, AC. Q.E, D.

L1 4

SPHERICAL TRIGONOMETRY.

SOLUTION of the Sixfeen Cases of Right Angled Spherical Triangees.

GENERAL PROPOSITION.

IN a right angled spherical triangle, of the three sides and three angles, any two being given, besides the right angle, the other three may be found.

In the following Table the solutions are derived from the preceding propositions. It is obvious that the same solutions may be derived from Baron Napier's two rules above demonstrated, which, as they are easily remembered, are commonly used in practice.

ase			
1	AC, C	B	$R: \operatorname{CoS}, A C:: S, C ; C o S, B:$ And B is of the same species with CA, by 22. and 13 .
2	AC, B	C	$\mathrm{CoS}, \mathrm{AC}: \mathrm{R}:$: CoS, B : S, C : Ву' 22.
3	B, C	AC	S, C:CoS, B : : R:CoS, A C: By 22. and $A C$ is of the same species with $B .13$.
4	BA, AC	BC	R: $\operatorname{CoS}, \mathrm{BA}: \operatorname{CoS}, \mathrm{A} \mathrm{C}: \operatorname{CoS}, \mathrm{BC} \cdot 2 \mathrm{I}$, and if both $A B, A C$ be greater or less than a quadrant, $B C$ will be less than a quadrant But if they be of different affection, $B C$ will be greater than a quadrant. I4.
5	BA, BC	1 C	$\operatorname{Cos}, \mathrm{BA}: \mathrm{R}:=\operatorname{CoS}, \mathrm{BC}: \operatorname{CoS}, \mathrm{AC} .21$. and if BC be greater or less than a quadrant, $B A, \Lambda C$ will be of different or the same affection: By 15 .
6	BA,AC	B	S, BA: R : : T, CA : T, B. 17 . and B is of the same affection with AC . I 3 .

Case.	Giv	Soug	
7	BA, B	AC	$R: S, B A:: T, B: T, A C$ 17. And $A C$ is of the same affection with B. 13 .
8	AC, B	BA	$T, B: R:: T, C A: S, B A, 17$.
9	BC, C	AC	R: $\operatorname{CoS}, \mathrm{C}:$: T, BC: T, CA. 20. If BC be less or greater than a quadrant, C and B will be of the same or different affections. 15. 13.
. 10	AC, C	BC	$\operatorname{CoS}, \mathrm{C}: \mathrm{R}:: \mathrm{T}, \mathrm{AC}: T, \mathrm{BC}$ 20. And BC is less or greater than a quadrant, according as C and A or C and B are of the same or different affections. I4. 15.
11	BC, CA	C	T, BC : R : : T, CA : CoS. C. 20. If BC be less or greater than a quadrant. CA and $A B$, and therefore $C A$ and C are of the same or different affections. 15.
12	BC, B	AC	$R: S, B C:: S, B: S, A C .18$. And AC is of the same affection with B .
13	AC, B	BC	$S, B: S, A C:: R: S, B C .18$.
14	BC, AC	B	$S, B C: R:: S, A C: S, B .18$. And B is of the same affection with $A C$.
15	B, C	BC	T, C: R:: CoT, B:CoS, BC. 1g. And according as the angles B and C are of different or the same affection, BC will be greater or less than a quadrant. 14 .
1	BC, C		R : $\operatorname{CoS}, \mathrm{BC}:$: T, C : CoT, B. 19. If BC be less or greater than a quadrant, C and B will be of the same or different affection.I5.

The second, eighth, and thirteenth cases, which are commonly called ambiguous, admit of two solutions: For in these it is not determined whether the side or measure of the angle sought be greater or less than a quadrant.

PROP. XXIII. Fig. 16.

IN spherical triangles, whether right angled or oblique angled, the sines of the sides are proportional to the sines of the angles opposite to them.

First, Let ABC be a right angled triangle, having a right angle at A; therefore, by Prop. 18. the sine of the hypothenuse BC is to the radius (or the sine of the right angle at A) as the sine of the side AC to the sine of the angle B. And in like manner, the sine of $B C$ is to the sine of the angle A, as the sine of $A B$ to the sine of the angle C; wherefore (II. 5.) the sine of the side $A C$ is to the sine of the angle B, as the sine of $A B$ to the sine of the angle C.

Secondly, Let BCD be an oblique angled triangle, the sine of either of the sides BC, will be to the sine of either of the other two CD , as the sine of the angle D opposite to BC is to the sine of the angle B opposite to the side CD . Through the point C , let there be drawn an arch of a great circle $\mathrm{C} A$ perpendicular upon BD ; and in the right angled triangle ABC , (18. of this), the sine of $B C$ is to the radius, as the sine of $A C$ to the sine of the angle B ; and in the triangle ADC (by 18. of this): And, by inversion, the radius is to the sine of DC as the sine of the angle D to the sine of AC: Therefore, ex requo perturbato, the sine of $B C$ is to the sine of $D C$, as the sine of the angle D to the sine of the angle B. Q. E.D.

PROP. XXIV. Fig. 17. 18.

IN oblique angled sphcrical triangles, having drawn a perpendicular arch from any of the angles upon the opposite side, the cosines of the angles at the base are proportional to the sines of the vertical angles.

Let BCD be a triangle, and the arch CA perpendicular to the base BD ; the cosine of the angle B will be the cosine of the angle D , as the sine of the angle BCA to the sine of the angle DCA.

For by 22, the cosine of the angle B is to the sine of the angle $B C A$ as (the cosine of the side $A C$ is to the radius; that is, by Prop. 22. as) the cosine of the angle D to the sine of the angle DCA; and, by permutation, the cosine of the angle B is to the cosine of the angle D, as the sine of the angle BCA to the sine of the angle DCA. Q. E. D.

$$
\text { PROP. XXV. Fig. 17. } 18 .
$$

THE same things remaining, the cosines of the sides $B C, C D$, are proportional to the cosines of the bases BA, AD.

For by 2I, the cosine of $B C$ is to the cosine of $B A$, as (the cosine of $A C$ to the radius; that is, by $21.2 s$) the cosine of $C D$ is to the cosine of $A D$: wherefore, by permutation, the cosines of the sides $B C, C D$ are proportional to the cosines of the bases $B A, A D . Q . E . D$.

PROP. XXVI. Fig. 17. 18.
THE same construction remaining, the sines of the bases BA, AD are reciprocally proportional to the tangents of the angles B and D at the base.

For by 17. the sine of BA is to the radius, as the tangent of $A C$ to the tangent of the angle B : and by 17 . and inversion the radius is to the sine of $A \mathrm{D}$, as the tangent of D to the tangent of $A C$: Therefore, ex æquo perturbato, the sine of $B A$ is to the sine of $A D$, as the tangent of D to the tangent of B.

PROP. XXVII. Fig. 17. 18.

THE cosines of the vertical angles are reciprocally proportional to the tangents of the sides.

For by Prop. 20. the cosine of the angle BCA is to the radius as the tangent of CA is to the tangent of BC ; and by the same Prop. 20. and by inversion, the radius is to the cosine of the angle DCA, as the tangent of DC to the tangent of CA : Therefore, ex æquo perturbato, the cosine of the angle $B C A$ is to the cosine of the angle DCA, as the tangent of $D C$ is to the tangent of BC. Q.E.D.

LEMMA. Fig. 19. 20.

IN right angled plain triangles, the hypothenuse is to the radius, as the excess of the hypothenuse above either of the sides to the versed sine of the acute angle adjacent to that side, or as the sum of the hyrothenuse, and either of the sides, to the versed sine of the exterior angle of the triangle.

Let the triangle $A B C$ have a right angle at B; $A C$ will be to the radius as the excess of $A C$ above $\AA B$, to the versed sine of the angle A adjacent to $A B$; or as the sum of $A C, A B$ to the versed sine of the exterior angle CAK.

With any radius DE , let a circle be described, and from D the centre let DF be drawn to the circumference, making the angle EDF equal to the angle BAC, and from the point F, let FG be drawn perpendicular to DE: Let AH, AK be made equal to $A C$, and DL to DE: DG therefore is the cosine of the angle EDF or BAC, and GE its versed sine: And because of the equiangular triangles $\mathrm{ACB}, \mathrm{DFG}, \mathrm{AC}$ or, AH is to DF or DE , as $A B$ to DG : Therefore (19.5.) AC is to the radius DE as BH to GE , the versed sine of the angle EDF or BAC : And since AH is to DE , as AB to DG (12.5 .), AH or AC will be to the radius DE as KB to LG , the versc sine of the angle LDF or KAC. Q.E.D.

PROP. XXVIII. Fig. 21. 22.

IN any spherical triangle; the rectangle contained by the sines of two sides, is to the square of the radius, as the excess of the versed sines of the third side or base, and the arch, which is the excess of the sides, is to the versed sine of the angle opposite to the base.

Let $A B C$ be a spherical triangle, the rectangle contained by the sines of $A B, B C$ will be to the square of the radius, as the excess of the versed sines of the base AC, and of the arch, which is the excess of $A B, B C$ to the versed sine of the angle ABC opposite to the base.

Let D be the centre of the sphere, and let $\mathrm{AD}, \mathrm{BD}, \mathrm{CD}$ be joined, and let the sines $A E, C F, C G$ of the arches $A B, B C$, $A C$ be drawn; let the side $B C$ be greater than $B A$, and let BH be made equal to BC ; AH will therefore be the excess of the sides BC, BA; let HK be drawn perpendicular to AD , and since AG is the versed sine of the base AC, and AK the versed sine of the arch AH, KG is the excess of the versed sines of the base AC, and of the arch AH, which is the excess of the sides BC, BA: Let GL likewise be drawn parallel to KH , and let it meet FH in L, let CL, DH be joinect, and let AD, FH meet each other in M .

Since therefore in the triangles $\mathrm{CDF}, \mathrm{HDF}, \mathrm{DC}, \mathrm{DH}$ are equal, DF is common, and the angle $F D C$ equal to the angle FDH , because of the equal arches BC, BH, the base HF will be equal to the base FC, and the angle HFD equal- to the right angle CFD: The straight line DF therefore (4..11.) is at right angles to the plane CFH: Wherefore the plane CFH is at right angles to the plane BDH , which passes through DF (18. 1r.). In like manner, since DG is at right angles to both GC and GL, DG will be perpendicular to the plane CGL; therefore the plane CGL is at right angles to the plane BDH , which passes through DG: And it was shewn, that the plane CFH or CFL was perpendicular to the same plane BDH: therefore the common section of the planes CFL, CGL, viz. the straight line CL, is perpendicular to the plane BDA (19. II.) and therefore CLF is a sight angle: In the triangle CFL having the right angle CLF, by the Lemma CF,

SPHERICAL TRIGONOMETRY.

is to the radius as L.H, the excess, viz. of CF or FH above FL, is to the versed sine of the angle CFL; but the angle CFL is the inclination of the planes $B C D, B A D$, since $F C$, FL are drawn in them at right angles to the common section BF : The spherical angle ABC is therefore the same with the angle CFL; and therefore $C F$ is to the radius as $L H$ to the versed sine of the spherical angle ABC ; and since the the triangle AED is equiangular (to the triangle MFD, and therefore) to the triangle MGL, AE will be to the radius of the sphere AD (as MG to ML; that is, because of the parallels as GK to LH: The ratio therefore which is compounded of the ratios of AE to the radius, and of CF to the same radius; that is (23.6.), the ratio of the rectangle contained by AE, CF to the square of the radius, is the same with the ratio compounded of the ratio of GK to LH , and the ratio of LH to the versed sine of the angle ABC ; that is, the same with the ratio of GK to the versed sine of the angle $A B C$; therefore, the rectangle contained by AE, CF, the sines of the sides AB, BC, is to the square of the radius as $G \mathrm{~K}$, the excess of the versed sines, $A G, A K$, of the base $A C$, and the arch AH , which is the excess of the sides to the versed sine of the angle $A B C$ opposite to the base AC. Q. E. D.

PROP. XXIX. Fig.: 23.

THE rectangle contained by half of the radius, and the excess of the rersed sines of two arches, is equal to the rectangle contained liy the sines of half the sum, and half the difference of the same arches.
2. Let AB, AC be any two arches, and let AD be made equal to AC the less; the arch DB therefore is the sum, and the arch CB the difference of $\mathrm{AC}, \triangle \mathrm{B}$: Through E the centre of the circle, let there be drawn a diameter DEF, and AF, joined, and CD likewise perpendicuar to it in G , and let BH be perpendicular to $A E$, and $A H$ will be the versed sine of the arch: $A B$, and $A G$ the versed sine of $A C$, and HG the excess of these versed sines: Let BD, BC, 3 BF , be joined, and FC also meeting BH in K .

Since therefore BH, CG are parallel, the alternate angles $\mathrm{BKC}, \mathrm{KCG}$ will be equal , but KCG is in a semicircle, and
therefore a right angle ; therefore BKC is a right angle ; and in the triangles $\mathrm{DF} \mathrm{B}, \mathrm{CBK}$, the angles $\cdot \mathrm{FDB}, \mathrm{BCK}$, in the same segment are equal, and $\mathrm{FBD}, \mathrm{BKC}$ are right angles; the triangles $\mathrm{DFB}, \mathrm{CBK}$ are therefore equiangular ; wherefore DF is to DB , as BC to CK , or HG ; and therefore the. rectangle contained by the diameter DF, and HG is equal to: that contained by DB, BC; wherefore the rectangle contained by a fourth part of the diameter, and HG, is equal to. that contained by the halves of DB, BC : But half the chord $D B$ is the sine of half the arch $D A B$, that is, half the sum of the arches AB, AC; and half the chord of BC is the sine of half the arch $B C$, which is the difference of $A B, A C$. Whence the proposition is manifest.

PROP. XXX. Fig. 19. 24.

THE rectangle contained by half of the radius, and the versed sine of any arch, is equal to the square of the sine of half the same arch.

Let AB be an arch of a circle, C its centre, and AC, CB, BA being joined: Let $A B$ be bisected in D, and let $C D$ be joined, which will be perpendicular to BA , and bisect it in E , (4. f.), BE or AE therefore is the sine of the arch DB or $A D$, the half of $A B$: Let $B F$ be perpendicular to $A C$, and AF will be the versed sine of the arch BA; but, because of the similar triangles $\mathrm{CAE}, \mathrm{BAF}, \mathrm{CA}$ is to AE as AB , that is, twice $A E$ to $A F$; and by halving the antecedents, half of the radius CA is to AE the sine of the arch AD , as the same AE to AF the versed sine of the arch AB . Wherefore, by 16. 6. the proposition is manifest.

PROP. XXXI. Fig. 25.

IN a spherical triangle, the rectangle contained by the sines of the two sides, is to the square of the radius, as the rectangle contained by the sine of the arch which is half the sum of the base and the excess of the sides, and the sine of the arch, which is half the difference of the same to the square of the sine of half the angle opposite to the base.

SPHERIGAL TRIGONOMETRY

Let $A B C$ be a spherical triangle, of which the two sides are $A B, B C$, and base $A C$, and let the less side $B A$ be produceds so that BD shall be equal to $\mathrm{BC}: \mathrm{AD}$ therefore is the excess of BC, BA; and it is to be shewn, that the rectangle contairred by the sines of BC, BA is to the square of the radius, as the rectangle contained by the sine of half the sum of $A C$, $A D$, and the sine of half the difference of the same $A C, A D$ to the square of the sine of half the angle $A B C$, opposite to the base AC.

Since by Prop. 28, the rectangle contained by the sines of the sides BC, BA is to the square of the radius, as the excess of the versed sines of the base AC and AD , to the versed sine of the angle B; that is (I.6.), as the rectangle contained by half the radius, and that excess, to the rectangle contained by half the radius, and the versed sine of B ; therefore (29. 30 . of this), the rectangle contained by the sires of the sides BC , BA is to the square of the radius, as the rectangle contained by the sine of the arch, which is half the sum of AC, AD, and the sine of the arch which is half the difference of the same $A C, A D$ is to the square of the sine of half the angle ABC. Q.E.D.

SOLUTION of the Twelve Cases of Oblique Angled Sphericae Triangees.

GENERAL PROPOSITION.

IN an oblique angled spherical triangle, of the Fig. 96.37. three sides and three angles, any three being given, the other three may be found.

$\text { I } \begin{aligned} & \hline \mathrm{B}, \mathrm{D}, \text { and } \\ & \mathrm{BC}, \text { two an- } \\ & \text { gles, and a } \\ & \text { side opposite } \\ & \text { one of them. } \end{aligned}$	C.	CoS, BC : R : : CoT, B : T, BCA. I9. Likewise by 24. $\operatorname{CoS}, \mathrm{B}: \mathrm{S}, \mathrm{BCA}:=\mathrm{CoS}$, D: S, DCA; wherefore BCD is the sum or difference of the angles DCA. BCA according as the perpendicular CA falls within or without the triangle BCD ; that is (16 . of this), according as the angles B, D are of the same or different affection.
2 B, C, and BC, two angles and the side between them.	D.	$\operatorname{CoS}, \mathrm{BC}: \mathrm{R}:: \mathrm{CoT}, \mathrm{B}: \mathrm{T}, \mathrm{BCA}, \mathrm{Ig}$, and also by $24 . \mathrm{S}, \mathrm{BCA}: \mathrm{S}, \mathrm{DCA}:: \mathrm{CoS}$, $\mathrm{B}: \mathrm{CoS}, \mathrm{D}$; and according as the angle $B C A$ is less or greater than $B C D$, the perpendicular CA falls within or without the triangle BCD ; and therefore (16 . of chis) the angles B, D will be of the same or different affection.
$3 \begin{aligned} & -\overline{B C, C D}, \\ & \text { and } B . \end{aligned}$	BD.	$\mathrm{R}: \mathrm{CoS}, \mathrm{B}:: \mathrm{T}, \mathrm{BC}: T, \mathrm{BA} .20$. and $\operatorname{CoS}, \mathrm{BC}: \operatorname{CoS}, \mathrm{BA}:: \operatorname{CoS}, \mathrm{DC}: \operatorname{CoS}$, DA. 25. and BD is the sum or difference of BA, DA.
$4 \begin{array}{\|l} \mathrm{BC}, \mathrm{DB} \\ \text { and } \mathrm{B} \text {. } \end{array}$		$\mathrm{R}: \operatorname{CoS}, \mathrm{B}:: \mathrm{T}, \mathrm{BC}: \mathrm{T}, \mathrm{BA} .20$ and $\operatorname{CoS}, \mathrm{BA}: \operatorname{CoS}, \mathrm{BC}:: \operatorname{CoS}, \mathrm{DA}$ CoS, DC 25. and according as DA, AC are of the same or different affection, DC will be less or greater than a quadrant. 14. 14.

SPHERICAL TRIGONOMETRY.

Given. Sought.

Given. Sought.

A, B, C.	
Fig. 7.	The Tides.
In the triangle DEF. are respectively the supplements, of the measures of the given angles B, A, C, in the triangle BAC' ; the sides of the tri- angle DEF are therefore given, and by the preceding case, the angles D, E, F may be found, and the sides BC, BA, AC, are the supplements of the mea- sures of these angles.	

The 3d, 5th, 7 th, 9 th, 10th cases, which are commonly called ambiguous, admit of two solutions, either of which will answer the conditions required; for, in these cases, the measure of the angle or side sought, may be either greater or less than a quadrant, and the two solutions will be supplements to each other. (Cor. to def. 4 6. Pl. Tr.)

If from any of the angles of an oblique angled spherical triangle, a perpendicular arch be drawn upon the opposite side, most of the cases of oblique angled triangles may be resolved by means of Napiet's rules.
FINIS.

$$
=\quad
$$

PLEASE DO NOT REMOVE
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

QA	Buclides
31	The Flements of Euclid
E866	
1806	

P\&ASci

[^0]: * N. B. To avoid repeating the word contained too frequently, th:e rectangle contained by two straight lines $A B_{2} A C$ is sametimes simply colled the rectangle $\Lambda B, A C$.

[^1]: * N. B. Whenever the expressfon "straight lines from the centre," or "drawn from the centre," occurs, it is to be understood that they are drawn to the circumsfresce.

[^2]: 2 a. 3. lines $K 13, K G, K F$, the point K^{2} is

[^3]: * 4 Prop. lib. 2. Archimedis de sphara et cylindro.

[^4]: \& A. 5.

[^5]: ${ }^{1}$ C. 11.

[^6]: * 15.11.

[^7]: - For there is some square equal to the circle $A B C D$; let P he the side of it, and to three straight lines BD, FH, and P , there can be a fourth proportional ; let this be Q : Therefore the squares of these four siraight lines are proportionals; that is, to the squares of $B D, F H$, and the circle $A B C D$, it is possible there may be a fourth proportional. Let this be S. Aud in like manner are to be understood some things in ome of the following propositions.

[^8]: +For, as in the foregoing note at", it was explained how it was possible there could be a fourth proportional to the squares of $B D, F H$, and the circle $A B C D$, which was named S . So, in like manner, there can be a fourth proportional to this other space, named T, and the circles $A B C D, E F G H$. And the like is to be understood in some of the following pronositions.

[^9]: + Because as a fourth proportional to the squares of BD, FHI, and the circtABCD, is possible, and that it cas-neitier be less razor gieater that a the circle EFGF , roust be equal to it.

[^10]: ء. 6.

[^11]: * This may be explained the same way as al the note + in Proposition 2. in tha Kise case.

[^12]: - This may be expiained the same way as the fike at the mark + in Prog. 2.

[^13]: - Vertex is put in place of altitude, which is in the Greek, becarse the pyramid, in what follows, is supposed to be circumscribed about the cone, and so must have the vanc verfex. Apd the same chagge is reacis in scrac places followirg.

[^14]: * The figures in the margin shew the number of the propositions in the other editions.

[^15]: 29. dat. 2. Cor. 20, 6.
[^16]: If A be greater than B, and io any thisd magnitude; then A and C togelke: have to B and C tog ther a less ratio than A has to B .
 L-: A be to B as C to D, and because A is greater than B, C is greator than D : But as A is to B, so A and C io B and D; and A and C tave io B and C a less ratho than A and C have to B and D , beciuse C is greater than D , therefore A and C have to $\overline{\text { a }}$ apd C leas satio then A to B.

[^17]: * Sce Dr. Gregory's edition of the Data.

[^18]: - The reader ought to be acquainted with arithmelical and geometrical progression and the binomial theorem, before he enters on a perusal of any account of logarithmsa

[^19]: * Some of the principal particulars of the foregoing methorls were. discovered by the celebrated Thomas Simpson. See also Mr. Hellins' Mathematical Essays, published in 1788.

